Land objects size approximation informational technology
DOI:
https://doi.org/10.34185/1562-9945-1-138-2022-02Keywords:
remote sensing, image, deep learning, semantic segmentation, masks, approximationAbstract
Despite rapid development of Big Data and data processing technologies, it is still quite a challenge to implement efficient pipelines for obtaining reliable and reasonable results. In re-mote sensing, thousands of gigabytes of data is acquired by satellite and aircraft vehicles, but only the modest amount of data is processed. Among the data processed, even less results re-mains reliable overtime due to the nature of satellite imagery. Nowadays, machine learning area affects nearly every domain of knowledge including remote sensing. A toolset of machine learning suggests ways to automate data processing which makes data pipelines constructure much more effective. Deep neural networks demonstrate the best results so far in image pro-cessing field. However, applying deep learning achievements in Remote Sensing still remain challenging in regard to multi-channel satellite imagery of a very-high resolution. Despite astonishing results deep learning field demonstrates in remote sensing competitions such as Open Street Map, these are applicable on regular RGB images of popular image formats such JPEG and similar. In current paper, a technology is suggested to apply deep neural network toolset in multispectral images of a very high resolution acquired from a commercial WorldView-3 satellite vehicle. The suggested approach covers topics of dataset preparation to fully replicate the results of the suggested neural network training. The proposed neural network solution output are segmentation maps. In addition to replicatable neural network structure, a particular use case is considered in detail which implements a fully automated technology of highly precise approximation of physical sizes of the land objects. The neural network performance is measured and compared to modern similar neural network solutions.
References
Dmytro Mozghovyi, Volodymyr Hnatushenko ta Volodymyr Vasyliev "Otsinka tochnosti avtomatyzovanoho rozpiznavannia obiektiv za dopomohoiu multyspektralnykh aerozobrazhen ta neironnoi merezhi", Zb. SPIE 10806, desiata mizhnarodna konferentsiia z tsyfrovoi obrobky zobrazhen (ICDIP 2018), 108060H (9 serpnia 2018 r.); https://doi.org/10.1117/12.2502905.
Iuan, Tsiantsian ta in. "Pohlyblene vyvchennia dystantsiinoho zonduvannia navkolyshnoho seredovyshcha: dosiahnennia ta problemy". Dystantsiine zonduvannia dovkillia 241 (2020): 111716.
Vin Nandzhun, Leiuan Fanh ta Antonio Plaza. "Hibryd Unet pershoho ta druhoho poriadku uvahy dlia pobudovy sehmentatsii u zobrazhenniakh dystantsiinoho zonduvannia." Science China Information Sciences 63.4 (2020): 1-12.
Iuan, Tsiantsian, Kh. Shen, T. Li, Chzhy-Vei Li, Shuven Li, Yun Tszian, Khunchzhan Siu, V. Tan, K. Yan, Tsziven Van, Tsziankhao Hao i Lianhpei Chzhan. "Pohlyblene vyvchennia dystantsiinoho zonduvannia navkolyshnoho seredovyshcha: dosiahnennia ta problemy". Dystantsiine zonduvannia dovkillia 241 (2020): 111716.
MOI Saifi, Dzh. Sinhla, Mykita. Osnovy hlybokoho navchannia dlia semantychnoi sehmentatsii suputnykovykh zobrazhen. 2020 Chetverta mizhnarodna konferentsiia z obchysliuvalnykh metodolohii ta zviazku (ICCMC). doi: 10.1109 / iccmc48092.2020.iccmc-00069
T. Shottner, (2019, 16 travnia). Chomu dani slid normalizuvaty pered navchan-niam neironnoi merezhi. Serednii.
Olaf Ronneberher, Filip Fisher ta Tomas Broks. "U-net: zghortkovi merezhi dlia biomedychnoi sehmentatsii zobrazhen." Mizhnarodna konferentsiia z obchyslen medychnykh zobrazhen ta kompiuternoho vtruchannia. Sprinher, Cham, 2015.
Volodymyr Hnatushenko ta Vadym Zhernovyi. "Metod vdoskonalennia seh-mentatsii ekzempliariv dlia zobrazhen dystantsiinoho zonduvannia duzhe vysokoi rozdilnoi zdatnosti za dopomohoiu hlybokoho navchannia" . U: Babichev S., Peleshko D., Vynokurova O. (red.) . Vydobuvannia ta obrobka potoku danykh. DSMP 2020. Komunikatsii v kompiuternii ta informatsiinii nautsi, vyp . 1158. Sprinher, Cham. https://doi.org/10.1007/978-3-030-61656-4_21.
Milletari Fausto, Nasir Navab ta Seiied-Akhmad Akhmadi. "V-net: povnistiu zghornuti neironni merezhi dlia obiemnoi sehmentatsii medychnykh zobrazhen." 2016 chetverta mizhnarodna konferentsiia z pytan 3D zoru (3DV). IEEE, 2016.
Vyklyk maskuvannia zobrazhen Carvana | Kahhl. (2015). URL: Kaggle. https://www.kaggle.com/c/carvana-image-masking-challenge/discussion/40199
P. Michikevichus, S. Naranh, Dzh. Alben, H. Diamos, E. Elsen, D. Harsiia, ... & Kh. Vu. Zmishana tochnist navchannia. preprynt arXiv arXiv: 1710.03740, 2017.
Nobuiuki Otsu. Msgstr "Metod vyboru porohu z histohram rivnia siroho" . Tranzaktsii IEEE shchodo system, liudyny ta kibernetyky, vyp. 9, № 1, s. 62-66, sichen 1979 r., Doi: 10.1109 / TSMC.1979.4310076.
A. Hosh, M. Erlikh, S. Shakh, L. Devis ta R. Chellappa. Skladeni U-merezhi dlia sehmentatsii nazemnoho materialu na znimkakh z dystantsiinym zonduvanniam. 2018 Konferentsiia IEEE / CVF z pytan kompiuternoho zoru ta rozpiznavannia zrazkiv (CVPRW), s.252-256. doi: 10.1109 / cvprw.2018.00047 .