Time series classification using recurrence charts
DOI:
https://doi.org/10.34185/1562-9945-5-136-2021-08Keywords:
класифікація, часовий ряд, рекурентна діаграма, згорткова нейронна мережаAbstract
The article describes a new approach to the classification of time series based on their recurrence plots. A convolutional neural network is used as an image classifier. The data for classification are the realizations of electrocardiograms. Research results indicate good classification accuracy compared to other methods and the potential of this approach.
References
Eckmann, J. P., Kamphorst, S. O., Ruelle, D.: Recurrence plots of dynamical systems. Europhysics Letters 4(9), 973-977 (1987).
Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence-plots-based measures of complexity and application to heart-rate-variability data. Physical Review E 66(2), 026702-1-026702-6 (2002).
doi: 10.1103/PhysRevE.66.026702
Marwan, N., Romano, M. C., Thiel, M., Kurths, J.: (2007). Recurrence plots for the analysis of complex systems. Physics reports 438(5-6), 237-329 (2007).
Kirichenko, L., Radivilova, T., Bulakh, V.: Classification of fractal time series using recurrence plots. In 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T) 2018 October, Kharkiv, Ukraine, IEEE, 719-724 (2018). doi: 10.1109/INFOCOMMST.2018.8632010
Kirichenko L., Zinchenko P., Radivilova T., Tavalbeh M. Machine Learning Detection of DDoS Attacks Based on Visualization of Recurrence Plots. Conflict -anagement in Global Information Networks (CMiGIN 2019): Proceedings of the International Workshop, Kyiv, Ukraine. Ceur, 2019. P. 23–34.
Kirichenko L., Zinchenko P., Radivilova T. Classification of Time Realizations Using Machine Learning Recognition of Recurrence Plots. In: Babichev S., Lytvynenko V., Wójcik W., Vyshemyrskaya S. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2020. Advances in Intelligent Systems and Computing, 2021, vol 1246. Springer, Cham, pp. 687-696.
https://doi.org/10.1007/978-3-030-54215-3_44.
Y. LeCun and Y. Bengio: Convolutional Networks for Images, Speech, and Time-Series, in Arbib, M. A. (Eds), The Handbook of Brain Theory and Neural Networks, MIT Press, 1995
Ciresan, Dan; Ueli Meier; Jonathan Masci; Luca M. Gambardella; Jurgen Schmidhuber "Flexible, High Performance Convolutional Neural Networks for Image Classification" Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence-Volume 2: 1237–1242. 2013
http://people.idsia.ch/~juergen/ijcai2011.pdf last accessed 2019/08/20
Time series classification, http://www.timeseriesclassification.com last accessed 2019/28/0216
D. Cielen, A. Meysman, M. Ali Introducing Data Science: Big Data, Machine Learning, and more, using Python tools, Manning Publications, 2016, 325 p.