SEGMENTATION OF GRAYSCALE LOW-CONTRAST IMAGES USING FUZZY TRANSFORMS OF TYPE-2

Authors

  • L.G. Akhmetshina
  • A.A. Yegorov

DOI:

https://doi.org/10.34185/1562-9945-1-156-2025-03

Keywords:

low-contrast images, fuzzy methods, visual analysis, membership function, segmentation, fuzzy sets of type-1, fuzzy sets of type-2.

Abstract

Segmentation of low-contrast grayscale images is a rather complex task due to the lack of a priori information about the location and characteristics of objects of interest that can be compared with noise. To solve this problem, various fuzzy algorithms based on the processing of membership functions to fuzzy sets describing the analyzed properties are currently often used. The paper proposes the algorithm for segmenting halftone images based on the iterative application of type-1 and type-2 fuzzy transformations. The presented algorithm provides sufficient image segmentation for visual analysis, without allowing excessive detailing, and has a small number of control parameters that do not require lengthy tuning. Unlike the fuzzy clustering algorithms, it does not use the fuzzy cluster center matrix, which reduces the computational load. Experimental results are presented on the example of real grayscale medical images segmentation.

References

Pegat A. Nechetkoye modelirovaniye i upravleniye / A. Pegat; [per. s angl. A.G. Podve-sovskogo, YU.V. Tyumentseva]; pod. red. YU.V. Tyumentseva  M.: BINOM, 2009.  768 s.

Сhi Z. Fuzzy algorithms: With Applications to Image Processing and Pattern Recognition / Z. Сhi, H. Yan, T. Pham – Singapore; – New Jersey; – London; – Hong Kong: Word Scien-tific, 1998. – 225 p.

Forsayt D., Pons J. Komp'yuternoye zreniye: sovremennyy podkhod / D. Forsayt, J. Pons; [per. s angl. A.V. Nazarenko, I. YU. Doroshenko]. – M.; – S.-P.; –K: Vil'yams, 2004. – 926 s.

Bezdek J. C. A Convergence Theorem for The Fuzzy ISODATA Clustering Algorithms / J. C. Bezdek // IEEE Transaction On Pattern Analysis And Machine Intelligence. – 1980. – Vol. 2, – № 1. – Р. 1 – 8.

Rhee F.C.H. A type-2 fuzzy C-means clustering algorithm / F.C.H. Rhee, C. Hwang // IFSA World Congress and 20th NAFIPS International Conference – 2001. – Vol. 4. – P. 1926 – 1929.

Zadeh L.A. The concept of a linguistic variable and its application to approximate reason-ing / L.A. Zadeh // Inf. Sci. – 1975. – Vol 8. – P. 199 – 249.

Aneja Deepali Fuzzy Clustering Algorithms for Effective Medical Image Segmentation / Deepali Aneja, Tarun Kumar Rawat // International Journal of Intelligent Systems and Appli-cations. – 2013. Vol. 5(11). – P. 55 – 61.

Akhmetshina L. Improvement of Grayscale Images in Orthogonal Ba-sis of the Type‐2 Membership Function / L. Akhmetshina, A. Yegorov // CMIS-2021: The Fourth International Workshop on Computer Modeling and Intelligent Systems, April 27, 2021, Zaporizhzhia. – P. 465 – 474.

Yegorov A. Optimizatsiya yarkosti izobrazheniy na osnove neyro-fazzi tekhnologiy / A. Yegorov, L. Akhmetshina // Monografiya. Lambert. – 2015. – 139 P.

Hassanien A. A comparative study on digital mammography enhancement algorithms based on fuzzy theory / A. Hassanien, A. Badr // Studies in Informatics and Control. – 2003. – Vol. 12., № 1. – Р. 1 − 31.

Downloads

Published

2025-03-30