Methodology for the development of neuro-fuzzy automatic control systems with a function for identifying the parameters
DOI:
https://doi.org/10.34185/1562-9945-6-155-2024-22Keywords:
neuro-fuzzy system, marine steam turbine installation, neural networks, dynamic systems, adaptive control, automatic control systems, thermal power plants.Abstract
The article discusses a methodology for developing neuro-fuzzy automatic control systems (ACS) for marine steam turbine installations (MSTI) with a parameter identification function during their operation. The proposed methodology includes stages of MSTI dynamic modeling, the development of parameter identification algorithms based on neural networks, and their integration with fuzzy logic for decision-making. An analysis of the proposed approach's capabilities regarding the enhancement of reliability and stability of marine power plants has been conducted. The results obtained demonstrate that such a system can adjust model parameters in real-time, ensuring control accuracy and reducing the risk of emergency situations. The methodology can be implemented in real marine power systems that require automated control of complex processes.
References
Åström KJ, Wittenmark B (1984) Computer controlled systems, theory and design. Prentice-Hall, Englewood Cliffs/ Доступ
https://bayanbox.ir/view/8821671619590593184/Adaptive-Control-Astrom-2nd-edition.pdf
Kuo B. S. Automatic Control Systems / Benjamin C. Kuo. – 9th ed. – New York : John Wiley & Sons, 2010. – 1104 p.
Technical specifications of auxiliary and utilization boilers of the brands: KAV, KUP, Clayton, Zafa, Hitachi, Mitsubishi. URL: http://shipservice.com.ua/.
Mikhailenko V. S., Kharchenko R. Yu. Analysis of Traditional and Neuro Fuzzy Adaptive System of Controlling the Primary Steam Temperature in the Direct Flow Steam Generators in Thermal Power Stations / V. S. Mikhailenko, R. Yu. Kharchenko // Automatic Control and Computer Sciences. – 2014. – Vol. 48, № 6. – Р. 334–344.
DOI:10.3103/S0146411614060066
Mykhailenko V. S. Analysis of methods for adaptation of industrial control systems of thermal processes / V. S. Mykhailenko // Науковий вісник Національного гірничого університету. – 2014. – № 4. – С. 58–65.
URL: http://nbuv.gov.ua/UJRN/Nvngu_2014_4_11.
Takagi T., Sugeno M. Fuzzy identification of system and its applications to modeling and control / T. Takagi, M. Sugeno // IEEE Transactions on Systems, Man, and Cybernetics. – 1985. – Vol. 15, № 1. – P. 166–132. http://dx.doi.org/10.1109/TSMC.1985.6313399
Mikhailenko V. S., Solodovnik M. S. Statement of the Synthesis Problem of the Intellectual System of Adaptive Management / V. S. Mikhailenko, M. S. Solodovnik // Lecture Notes in Economics and Mathematical Systems / Gil-Lafuente, Zopounidis Constantin (Eds.). – 2015. – Vol. 675. – 223 p. – P. 165–179. (Springer).
Zhang Y., Chen Z. Q., Yang P., Yuan Z. Z. Neural network-based PID predictive control for nonlinear time-delay systems / Y. Zhang, Z. Q. Chen, P. Yang, Z. Z. Yuan // Proceedings of International Conference on Machine Learning and Cybernetics. – 26–29 Aug. 2017. – Vol. 2. – P. 1014–1018. doi:10.1109/ICMLC.2004.1382336
Lee K. Y, L. Y. Ma, C. J. Boo, W.-H. Jung, and S.-Ho Kim. Inverase dynamic neuro-controller for superheater steam temperature control of a large-scale ultra supercritical (USC) boiler unit. // Proc. of the IFAC Symposium on Power Plants and Power Systems Control, in Tampere, Finland, July 5 – 8. – 2019.
Improving Direct Efficiency of Boilers – Role of Automation.
URL: https://www.forbesmarshall.com.
Marine Boiler and Steam Turbine Generator.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 System technologies

This work is licensed under a Creative Commons Attribution 4.0 International License.