THE APPLICATION OF SPECTRAL ANALYSIS OF EEG DATA FOR THE IDENTIFICATION OF OPEN AND CLOSED EYE STATES

Authors

  • Panasenko Ye.S.
  • Belozyorov V.Ye.

DOI:

https://doi.org/10.34185/1562-9945-6-155-2024-11

Keywords:

spectral analysis, electroencephalography, time series, Fast Fourier Transform, brain rhythms, frequency artifacts, PyRQA.

Abstract

The article examines the analysis of electroencephalogram (EEG) data for the classification of open and closed eye states using the Fast Fourier Transform (FFT). It is shown that this method demonstrates stable recognition accuracy at the level of 70-80% in distinguishing between open- and closed-eye states, demonstrating its effectiveness in classifying biomedical signals. General information about EEG is described, points for their reading, in particular about the “10-10 system”, information about the main types of brain rhythms is given. Modern methods for analyzing EEG data were also reviewed, highlighting three main approaches: spectral analysis, recurrence analysis, and machine learning methods. Software was developed for classification of information presented in the form of EEG time series obtained in the state of open and closed eyes. The software was developed in Python utilizing the PyRQA library.

References

S. Kargarnovin, C. Hernandez, F. V. Farahani, and W. Karwowski Evidence of Chaos in Electroencephalogram Signatures of Human Performance: A Systematic Review / S. Kargar-novin, C. Hernandez, F. V. Farahani, and W. Karwowski. - Brain Sci. - vol. 13, no. 5, May 2023. - p. 813.

X. Wang, J. Meng, G. Tan, and L. Zou Research on the relation of EEG signal chaos char-acteristics with high-level intelligence activity of human brain / X. Wang, J. Meng, G. Tan, and L. Zou. - Nonlinear Biomedical Physics. - vol. 4, no. 1, Apr. 2010. - p. 2.

J. Gallego-Rudolf, M. Corsi-Cabrera, L. Concha, J. Ricardo-Garcell, and E. Pasaye-Alcaraz Preservation of EEG spectral power features during simultaneous EEG-fMRI / J. Gallego-Rudolf, M. Corsi-Cabrera, L. Concha, J. Ricardo-Garcell, and E. Pasaye-Alcaraz. - Front Neurosci. - vol. 16, 2022. - p. 951321.

S. Makeig, A. Bell, T.-P. Jung, and T. J. Sejnowski Independent Component Analysis of Electroencephalographic Data / S. Makeig, A. Bell, T.-P. Jung, and T. J. Sejnowski. - in Ad-vances in Neural Information Processing Systems. - vol. 8, 1995. -.

N. S. M. Nor, N. H. A. H. Malim, N. A. P. Rostam, J. J. Thomas, M. A. Effendy, and Z. Hassan Automated classification of eight different Electroencephalogram (EEG) bands using hybrid of Fast Fourier Transform (FFT) with machine learning methods / N. S. M. Nor, N. H. A. H. Malim, N. A. P. Rostam, J. J. Thomas, M. A. Effendy, and Z. Hassan. - Neuroscience Research Notes. - vol. 5, no. 1, 1, Mar. 2022. - pp. 116–116.

J. Hu, F. Jia, and W. Liu Application of Fast Fourier Transform / J. Hu, F. Jia, and W. Liu. - Highlights in Science, Engineering and Technology. - vol. 38, Mar. 2023. - pp. 590–597.

J. R. Winkler Numerical recipes in C: The art of scientific computing, second edition / J. R. Winkler. - Endeavour. - vol. 17, no. 4, Jan. 1993. - p. 554.

EEG Motor Movement/Imagery Dataset /. [Online]. Available: https://archive.physionet.org/pn4/eegmmidb/. [Accessed: 21-Feb-2024].

G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw BCI2000: A general-purpose brain-computer interface (BCI) system / G. Schalk, D. J. McFarland, T. Hin-terberger, N. Birbaumer, and J. R. Wolpaw. - IEEE Trans Biomed Eng. - vol. 51, no. 6, Jun. 2004. - pp. 1034–1043.

A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals / A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. - Circulation. - vol. 101, no. 23, Jun. 2000. - pp. E215–220.

T. Rawald, M. Sips, and N. Marwan PyRQA—Conducting recurrence quantification analysis on very long time series efficiently / T. Rawald, M. Sips, and N. Marwan. - Com-puters & Geosciences. - vol. 104, Jul. 2017. - pp. 101–108.

P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms / P. Welch. - IEEE Trans. Audio Electroacoust. - vol. 15, no. 2, Jun. 1967. - pp. 70–73.

Downloads

Published

2025-02-02