FUNCTIONING FEATURE ANALYSIS OF VOLTAGE LIMITERS BASED ON A COMBINED VARISTOR-POSISTOR STRUCTURE
DOI:
https://doi.org/10.34185/1562-9945-5-142-2022-07Keywords:
varistor ceramics; polymeric positive temperature coefficient (PPTC) nanocomposite; varistor-posistor structure, voltage limiter; voltage source internal resistance, heat transfer intensityAbstract
Modeling and analysis results concerning the influence of the electrical and thermal conditions on the functioning of series-connected and thermally contacted layers of varistor ceramics and a posistor composite are presented. Such structures may be useful for the development of a promising limiter of constant and slowly varying voltages. The main attention is paid to the behavior of their functional electrical and thermal characteristics with changes in the internal resistance of the input voltage source and in heat flow intensity to the environment as well as in its temperature. It is shown that a change in the internal resistance of the input voltage source can only lead to a shift towards higher input voltage values ensuring the posistor element actuation. At a low intensity of heat exchange between such a voltage limiter and the environment, it may operate at voltages lower than the classification voltage of the varistor layer, and thus the device under consideration is not capable of fixing a constant voltage at the output and can function as a self-resetting high voltage fuse. In the case of an increase in the ambient temperature (up to the temperature of the phase transition in the posistor layer material), the temperature of the structure and the output voltage of the device change insignificantly around the temperature limitation point, and the current value and dissipation power of the structure are much reduced. For structures based on varistor ceramics with a strong temperature dependence of low-voltage resistance (high activation energies of its temperature sensitivity), the output voltage decrease (to values of one volt order) takes place.
References
T.K. Gupta, Application of zinc oxide varistors, J. Am. Ceram. Soc. 73, 1817 (1990).
Li, S., Li, J., Liu, W., Lin, J., He, J., & Cheng, P. (2015). Advances in ZnO varistors in China during the past 30 years—fundamentals, processing, and applications. IEEE Electrical Insulation Magazine, 31(4), 35-44.
R. B. Standler, Protection of Electronic Circuits from Overvoltages (Dover Publica-tions, INC. Mineola, New York, 2002).
W. Gretzke, Use of Polyswitch PPTC Protection in Automotive Applications, eds. H. Wallentowitz and C. Amsel, 42 V-Power-Nets (Springer, Berlin, Heidelberg, 2003), pp. 75–87.
S. Cheng, K. Tom and M. Pecht, Failure precursors for polymer resettable fuses, IEEE Trans. Dev. Mater. Reliab. 10, 374 (2010)
Toth, J., & Protection, R.C. (2020). PolySwitch PPTC device principals of opera-tion
Tonkoshkur A.S., Ivanchenko A.V., Nakashydze L.V., Lyashkov A.Yu., Gomilko I.V. Application of polymer posistor nanocomposites in systems for protecting pho-tovoltaic components of solar arrays from electrical overloads. Monograph. – Prime-dia eLaunch, Boston, USA, 2021. – 172 p. DOI: 10.46299/978-1-63972-054-5
B. Golubovic, P. N. Becker and R. P. Moore, Circuit protection device having ther-mally coupled MOV overvoltage element and PPTC overcurrent element, U.S. Patent 7,660,096 B2 (2010).
Tonkoshkur A. S. and Ivanchenko A. V. Electrical properties of structures based on varistor ceramics and polymer nanocomposites with carbon filler. Journal of Ad-vanced Dielectrics. Vol. 09, No. 03, 1950023 (2019)
Hu, H., Shi, G., Wang, Q., Dai, T., &Xia, H. SPICE Model of Polyswitch Device. http://hanbinhu.github.io/data/report/2014_PPTC_TE_Connectivity.pdf
Іванченко О.В., Тонкошкур О.С. Вплив температури навколишнього середо-вища на електричні властивості варисторно-позисторної структури. Технологія та конструювання в електронній апаратурі, 2022, № 1–3, с. 3–7.
http://dx.doi.org/10.15222/TKEA2022.1-3.03
Ivanchenko A.V., Tonkoshkur A.S., Mazurik S.V. Application of varistor-posistor structure for protection from overvoltages of photovoltaic cells of solar arrays. Jour-nal of Physics and Electronics. -2019. - No 27(1). - P. 79-88.
Tyco Electronics, Application note, PolySwitch strap devices help protect re-chargeable battery packs (2008), http://www.digikey.jp/ Web Export/Supplier Con-tent/Tyco 8004/PDF/TE Strap Device. pdf.
Littelfuse, PolySwitchr PTC devices, Overcurrent protection device, Product: RXEF050 (2016), https://www.littelfuse.com/ _/media/electronics/product specifica-tions/resettable ptcs/littelfuse ptc rxef050 product specification.pdf.pdf.
Kutateladze S.S. Osnovyi teorii teploobmena, 5-e izd. Moscow, Atomizdat, 1979, 416p.
Глот О.Б. Окисні керамічні варистори. Навчальний посібник / О.Б. Глот, О.I. Ивон, О. С. Тонкошкур, I. М. Черненко. Дніпропетровськ: ДДУ, 1998. 140 с
Maxfield B. Engineering with Mathcad: using Mathcad to create and organize your engineering calculations. – Elsevier, 2006.- 521 p.
Metal-Oxide Varistors (MOVs) Surface Mount Multilayer Varistors (MLVs) > MLA Series: [Electronic resourse]: Littelfuse, Inc. - Mode access:
https://m.littelfuse.com/~/media/electronics/datasheets/varistors/littelfuse_varistor_mla_d atasheet.pdf.pdf
Fuzetec: Radial Leaded PTC Resettable Fuse: FRX Series: [Electronic resourse]: Fuzetec Technology Co., LTD. –Mode access:
http://www.fuzetec.com/upload/download/App%20FRX%20Series%20tVer.61.pdf
Тонкошкур А. С. Моделирование деградации металлоксидных варисторных элементов защиты электрических цепей: [монографія] / А. С. Тонкошкур, А.В. Иванченко – Днепр: ТОВ „АКЦЕНТ ПП”, 2019. – 157 с.
Шефтель И. Т. Терморезисторы. Москва, Наука, 1973, 415 c.
Thermistor types – their workings and applications.
https://www.elprocus.com/introduction-to-thermistor-types-with-its-workings-and-applications/ (Дата звернення: 20 февраля 2022)
FRX Series - Radial Leaded PTC.
https://www.fuzetec.com/products_2.php?bgid=1&gid=31 (Дата звернення: 20 февраля 2022)
Clarke, D. R. (1999). Varistor ceramics. Journal of the American Ceramic Society, 82(3), 485-502