Adaptive tools for formation of the knowledge base of information and analytical system of training scientific staff

Authors

  • M. L. Rostoka

DOI:

https://doi.org/10.34185/1562-9945-4-141-2022-08

Keywords:

Information-Analytical System, Training of Scientific Staff, Knowledge Base, Tools, Adaptability, Semantic Network, Ontological Approach, Expert System, Digitalization

Abstract

The author emphasizes the urgency of preserving the integrity of the scientific and educational process for the training of highly qualified personnel in higher education universities and research institutions. It is noted that the consequences of force majeure, including quarantine from the COVID-19 pandemic and the current martial law in Ukraine, cause some adjustments in the organization of training of scientific staff. In this regard, it is likely that the problem of creating a fundamentally new information-analytical system (IAS), which in this vector will include a specific knowledge base fol-lowing the requests of research users – subjects of scientific training. Thus, the article aims to present the results of the doctoral research, in particular on the intermediate content analysis of scientific, information and reference, educational and methodologi-cal and other literature sources and practice-oriented resources on the development of information technology and systems and their adaptive transfer, which will contribute to the accumulation of analytical information and its digitization. Emphasis is placed on the rationality of creation and use of intelligent IAS based on the formed specific knowledge bases using semantic technologies and ontological modelling. This is due to the existence of a large amount of diverse analytical information, based on which the issues of any research, which in the context of training is a mandatory component of sci-entific and educational activities of applicants for scientific education (undergraduates, graduate and doctoral researchers, etc.). It is claimed that a modern researcher will be able to master modern tools and expert technologies of information and analytical ac-tivities. A brief description of the adaptive tools with which the formation of a specific knowledge base in the IAS of training of scientific staff is presented. It is noted that se-mantic and ontological approaches are the most effective in this regard for building in-formation systems, in particular those related to the development of information-analytical competence of applicants for scientific education.

References

Baklan I. V. (2012). Ekspertni systemy. Kurs lektsii: navch. posibnyk. Kyiv: NAU, 132 s.

Vakhniuk S. V. (2011). Tekhnolohiia stvorennia prohramnykh ta intelektualnykh system: navch. posibnyk. Sumy: DVNZ «UABS NBU», 254 s.

Zhuk P. F. (2009). Metody ta zasoby podannia znan: navch.-metod. kompleks dystsypliny dlia pidhotovky bakalavriv dennoi formy navchannia za napriamom 0804 «Kompiuterni nauky» spetsialnosti 6.080400 «Intelektualni systemy pryiniattia rishen». Irpin, 359 s.

Zybin S. V. (2018). Kilkisna optymizatsiia resursiv informatsiinoi systemy dlia efektyvnoi pidtrymky pryiniattia rishen. Telekomunikatsiini ta informatsiini tekhnolohii, Vyp. 1(58). S. 134-141.

Kravets V. O., Khavina I. P., Kolybin Yu. M. ta in. (2006). Vstup do ekspertnykh system: navch. posib. Kharkiv: NTU «KhPI», 232 s.

Kushniretska I. I. (2017). Informatsiina tekhnolohiia dynamichnoi intehratsii slabostrukturovanykh danykh u web-systemakh : dys. … k. tekh. n.: 05.13.06 – informatsiini tekhnolohii / Iryna Ihorivna Kushniretska; Natsionalnyi universytet «Lvivska politekhnika». Lviv, 164 s.

Mesiura V. I., Yarovyi A. A., Arseniuk I. R. (2006). Ekspertni systemy: navch. posibnyk (chastyna 1). Vinnytsia: VNTU, 114 s.

Pleskach V. L. , Rohushyna Yu. V. (2005). Ahentni tekhnolohii: monohrafiia. Kyiv: Kyiv. nats. torh.-ekon. un–t, 344 s.

Rohushyna Yu. V. (2018). Modeli ta metody vykorystannia ontolohii u semantychnomu poshuku u WEB. Proceedings of the UkrPROG 2018: 11th Inter. Conf. of Progr. (May 22-24, 2018, Kyiv, Ukraine), Vol. 2139. pp. 197-203. URL: http://ceur-ws.org/Vol-2139/197-203.pdf.

Rohushyna Yu., Pryima S., Strokan O. (2017). Stvorennia ta vykorystannia semantychnykh Wiki-resursiv: dovidnyk. URL: https://shron1.chtyvo.org.ua/Rohushyna_Yuliia/Stvorennia_ta_vykorystannia_semantychnykh_Wiki-resursiv.pdf?

Rukovodstvo po Protégé 4.2. URL: https://docs.google.com/document/d/

Fg9u9pf5RXBu8bklLh48MkZ01-DLrd8hn3ZJbTh6xg4/edit#.

Semerikov S. O., Teplytskyi I. O. (2006). CLIPS: lokalizovana obolonka ekspertnoi system dlia vitchyznianoi systemy osvity. URL: https://core.ac.uk/download/pdf/77241079.pdf

Sokolovska Z. M. (2005). Ekspertni systemy v ekonomichnykh doslidzhenniakh: monohrafiia. Odesa: Astroprynt,. 240 s.

Sokolovska Z. M. (2012). Vykorystannia nechitkykh ekspert nykh system v praktytsi ekonomichnykh doslidzhen. Ekonomika: realii chasu: nauk. zhurnal. Vyp. 1 (2). S. 162-168. URL: http://economics.opu.ua/files/archive/2012/n1.html

Subbotin S. O. (2008). Podannia y obrobka znan u systemakh shtuchnoho intelektu ta pidtrymky pryiniattia rishen: navch. posibnyk. Zaporizhzhia : ZNTU, 341 s.

Shapovalova S. I., Mazhara O. O. (2021). Prohramnyi instrumentarii rozrobky ekspertnykh system: kompiuternyi praktykum: navch. posib. dlia zdobuvachiv stupenia doktora filosofii zi spetsialnosti 122 Kompiuterni nauky. Kyiv: KPI im. Ihoria Sikorskoho, 56 s.

CLIPS User’s Guide/ Version 6.0. NASA. Lyndon B. Johnson space center information systems directorate. Software Technology Branch, 1999. 578 p.

Farquhar A., Fikes R., Rice J. (1997).The Ontolingua server: A tool for collaborative ontology construction. International Journal of Human-Computer Studies, 46(6),

pp. 707-728,

Florentin J. J. (2010). Software Review: KEE. Ex-pert Systems, Vol.4, No. 2. pp. 118-220.

Forgy C. L. (2004). FuzzyClips User’s Manual. – Pittsburg, Pa: Carnegie-Mellon University, 310 p.

FuzzyCLIPS. – http://ai.iit.nrc.ca/fuzzy/fuzzy.html.

Friedman-Hill Er. J. (2003). Jess, The Rule Engine for the Java Platform. Distributed Computing Systems Sandia National Laboratories Livermore, CA Version 6.1p4 (8 July 2003). https://www.csie.ntu.edu.tw/~sylee/courses/jess/docs/.

Guraliuk A. G., Rostoka M. L., Cherevychnyi G. S., Zakatnov D. O., Pavlysh T. H. (2021). Dual-Component Ontograph Visualization IOP Conference Series: Materials Science and Engineering, 1031 (1), 012119. In: Springer, Cham, Scopus. DOI: https://doi.org/10.1088/1757-899X/1031/1/012119 (English).

Guraliuk A., Rostoka M., Koshel A., Skvorchevska Y., Luchaninova O. (2022). Ontological Modeling of Electronic Educational Resources. Lecture Notes in Networks and Systemsthis. 390 LNNS, pp. 661–668. In: Springer, Cham, Scopus, WoS. DOI: https://doi.org/10.1007/978-3-030-93907-6_71 (in English).

Michon J. A., Akyürek A. (1992). Basic References for Soar. In: Michon, J.A., Akyürek, A. (eds) Soar: A Cognitive Architecture in Perspective. Studies in Cognitive Systems, vol. 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2426-3_9.

Musen M. (1998). Domain Ontologies in Software Engineering: Use of Prot?g? with the EON Architecture. Methods of Inform. in Medicine, pp. 540-550.

Rostoka M., Guraliuk A., Kuzmenko O., Bondarenko T., Petryshyn L. (2021). Ontological Visualization of Knowledge Structures Based on the Operational Management of Information Objects. In: Auer, M.E., Rüütmann, T. (eds). Advances in Intelligent Systems and Computing, vol. 1329. In: Springer, Cham, Scopus, WoS. DOI: https://doi.org/10.1007/978-3-030-68201-9_82 (in English).

Preece A. et al. (2000). The KRAFT Architecture for Knowledge Fusion and Transformation. In: Bramer M., Macintosh A., Coenen F. (eds) Research and Development in Intelligent Systems XVI, pp. 23–38. Springer, London. DOI: https://doi.org/10.1007/978-1-4471-0745-3_2.

Sure Y., Erdmann M., Angele J., Staab S., Studer R., Wenke D. (2002). OntoEdit: Collaborative ontology development for the Semantic Web. In Proc. of the Inter. Semantic Web Conference (ISWC 2002), Sardinia, Italia.

Published

2022-03-28