Detecting fishing URLs using fuzzy clustering algorithms with global optimization

Authors

  • O. Gerasina
  • V. Korniienko
  • O. Gusev
  • K. Sosnin
  • S. Matsiuk

DOI:

https://doi.org/10.34185/1562-9945-2-139-2022-06

Keywords:

confidential data, classifier, fuzzy clustering of C-means, phishing attacks, global optimization, subtractive clustering

Abstract

An algorithm for detecting phishing URLs (classifier) using fuzzy clustering is proposed, which includes choosing the type of intelligent classifier and justifying its parameters using global optimization methods. The following were studied as intellectual classifiers: subtractive clustering and fuzzy clustering of C-means. To find (adjust) the optimal (for a specific task) parameters of intelligent classifiers, the use of global optimization methods is justified, including genetic algorithm, direct random search, annealing simulation method, multicriteria optimization and threshold acceptance method. As a criterion of global optimization, a combined criterion was used, which includes the definition of the regularity criterion calculated on the test sample and the bias (minimum shift) criterion based on the analysis of solutions. By modeling in the Matlab environment with the help of standard and developed programs, the evaluated efficiency of using the proposed algorithm is evaluated on the example of experimental data – a set of 150 phishing and 150 secure URLs. The set of experimental data included information about the domain name registrar, the lifetime of the domain, the geolocation of the hosting server, the presence of a secure connection with a valid certificate. By simulation it is established that the fuzzy classifier with the subtractive clustering algorithm and using the Sugeno structure and 6 clusters meets the minimum of the combined criterion. All phishing URLs that were mistakenly classified as secure were found to have a secure con-nection with a valid certificate. Thus, further research should be aimed at exploring additional informative attributes (features) that could allow better separation of phishing and secure URLs.

References

Zvit kompanii NSS Labs pro testuvannia zakhystu vid fishynhu za druhyi kvartal 2020 r. [Electronic resource] – Access mode:

https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWAIQX.

Zvit kompanii APWG pro tendentsii fishynhovoi diialnosti za pershyi kvartal 2020 roku. [Electronic resource] – Access mode:

https://docs.apwg.org/reports/apwg_trends_report_q1_2020.pdf.

Intelligent phishing detection system for e-banking using fuzzy data mining / M. Aburrous, M.A. Hossain, K. Dahal, F. Thabtah // Expert Systems with Applica-tions. – 2010. – Vol.37, issue 12. – P. 7913–7921.

Fuzzy Modelling using Firefly Algorithm for Phishing Detection / N.S. Nordin et al. // Advances in Science, Technology and Engineering Systems Journal. – 2019 – Vol. 4, No. 6. – P. 291-296.

Barraclough P.A. Parameter optimization for intelligent phishing detection using Adaptive Neuro-Fuzzy / P.A. Barraclough, M.A. Hossain, G. Sexton, N. Aslam // In-ternational Journal of Advanced Research in Artificial Intelligence. – 2014. – 3(10). – P. 16-25.

Zhang N. Phishing Detection Using Neural Network / N. Zhang, Y. Yuan // Stan-ford University – 2012. [Electronic resource] – Access mode: http://cs229.stanford.edu/proj2012/ZhangYuan-PhishingDetectionUsingNeuralNetwork.pdf.

Gupta S. Phishing URL detection by using artificial neural network with PSO / S. Gupta, A. Singhal // 2nd International Conference on Telecommunication and Net-works (TEL-NET). – 2017. – P. 1-6.

Korniienko V.I. Intelektualne modeliuvannia neliniinykh dynamichnykh protsesiv v systemakh keruvannia, kiberbezpeky, telekomunikatsii: pidruchnyk / V.I. Korniienko, O.Yu. Husiev, O.V. Herasina; za zah. red. V.I. Korniienka; M-vo osvity i nauky Ukrainy, Nats. tekhn. un-t «Dniprovska politekhnika». – Dnipro : NTU «DP», 2020. – 536 p.

Rutkovskaya D. Neyronnyye seti, geneticheskiye algoritmy i nechetkiye sistemy / D. Rutkovskaya. M. Pilinskiy. L. Rutkovskiy // per. s polsk. I.D. Rudinskogo. – M.: Horiachaia lynyia-Telekom, 2006. – 452 p.

Shtovba S.D. Proektyrovanye nechetkykh system sredstvamy Matlab / S.D. Shtovba. – M.: Horiachaia lynyia – Telekom, 2007. – 288 p.

Yager R. Essentials of Fuzzy Modelling and Control / R. Yager, D. Filev. – USA: John Wiley & Sons. – 1984. – 387 p.

Bezdek J.C. Pattern Recognition with Fuzzy Objective Function Algorithms / J.C. Bezdek. – New York : Plenum Press. – 1981. – 272 p.

Ivakhnenko A.G. Inductive learning algorithms for complex systems modeling / A.G. Ivakhnenko, H.R. Madala – London, Tokyo: CRC Press, 1994. – 384 p.

Published

2022-03-30