Modeling sedimentation in the river system at the south regions

Authors

  • Оleksiy Nazarenko
  • Vasyl Dоnеnko
  • Іryna Nazarenko
  • Olga Petuhova
  • Mustafa Ahmed

DOI:

https://doi.org/10.34185/1562-9945-6-131-2020-07

Keywords:

гідроенергетичний потенціал, акумулювання, моделювання режимів, завислі речовини, механічна ерозія, водний баланс, сировина, система

Abstract

At the end of the last century, mankind began to be confused about the reduction of the river surface and the reduction of the hydropower potential of the river system. Of course, lowering the level by 0,2-0,3 meter at 15 meters depth will not increase the risk of hydro-?ogical crisis. The trend of deteriorating river capacity over 10-20 years inspires scientists and municipalities to control factors and model sedimentation accumulation risks. Urban planning strategy is directly related to supply building materials. The transformation of chemical components of urban and industrial wastewater should be controlled, optimally using GPS sensors. Man-caused load on urban reservoirs should be controlled by BSC 5, BSC 20 and promptly sent for rehabilitation to local recreational reservoirs and agricultural plots for forced filtration. Studies of the kinetics of precipitation of suspended solids in the industrial stream were performed in recreational estuary. Measured flow depths instrumentally and the chemical composition of the settled sludge in the laboratory. The research indicate the possibility of using additional raw materials with subsequent evaporation and chemical enrichment. Measurements of the sedimentation duration of the sediment were performed in the field using a level gauge and laboratory scales fen 300, the deposition kinetics were recorded by a Fisher camera CRI 10 7GB.
The profile software product for hydrological data processing, operational risk modeling and formation of construction industry development strategy has been developed.
Accumulation and processing of local raw materials is extremely important to reduce the cost of construction services in the design of SMART city.

References

Jorgensen S.E. Handbook of Ecological Models Used in Ecosystem and Environmental Management/CRC Press University Denmark. Copenhagen, 2011. 600 р.

Nazarenko O.M. Ryzyk menedzhment vodokorystuvachiv richky Dnipro[Risk man-agement of the Dnieper River water users]: monohrafiia/ Zaporizhzhia: STS Hrupp, 2018. 208 s.

Oliinyk O. Ya., Airapetian T. S. Rozrakhunok kysnevoho rezhymu pry biolohichnomu ochysshchenni stichnykh vod v aerotenkakh-zmshuvachakh zzakripleny mizva zhenym bi-otsenosom. [Calculation of the oxygen regime at biological sewage treatment in aerotanks-mixers with fix ed and weighted biocenosiszom] // Naukovyi visnyk budivnytstva. - Kharkiv: KhNUBA, KhOTVABU.-2019.-№1(94).- pp.187-191.

Uteplennia, remont ta rekonstruktsii aploskykh pokrivelt syvilnykh budivel: posibnyk [Insulation, repair and reconstruction of flat roofs of civilian buildings] /Avramenko Yu. O., Leshchenko M. V., Mahas N. M. za red. O. V. Semka. — Poltava: TOV «Astraia», 2017. — 238 s.

Marker B.A., Breure A.M., Zechmeister H.G. Bioindicators and biomonitors. Principles, concepts and application. Handbook /ElsevrierScienceLtd. 2003. 1017 р.

Remonty эkspluatatsyiarulonny khkrovel: Praktychesko e posobye dlia rabotnykov ZhKKh

[Repairand operation of roll ed roofs: A practical manual for housing and communal services workers] / N.M. Vavulo, A.E. Kharkovskyi, R.F. Zarypov, O.L. Rohachevskyi, V.A. Zhel-nynskyi, Y.M. Dehtiarev, A.N. Lыchyts, D.A. Fysiurenko. — M.; SPb.: OOO «ATM», 2011. — 86 s.

Syvitski J., Cohen S., Miara A., Best J. River temperatu re and the thermal-dynamic transport of sediment. Global and Planetary Change. Volume 178, 7/2019, pp. 168-183.

Elgueta M., Astaburuaga M., Hassan A. Sediment storage, partial transport, and the evolution of an experimental gravel bed und erchanging sediment supply regimes Geomorphology. Volume 330, 4/2019, pp. 1-12.

KehuiXu, Samuel J., BentleyJ., Day W., Freeman A. A review of sediment diversion in the Mississippi River Deltaic Plain. Estuarine, Coastal and Shelf Science. 5/2019, pp.235-241.

Kuprienko P., Lapowska S., Kuprienko N, 2017. Nanomodified natural aluminum sili-cates in technology treatment of industrial waste and the production of building materials. Underwater technologies, Vol.05, pp.74-83.

Yarkyn V.A. Opredelenye effektyvnosty raboty perehorod chatohosmesy teliakorydorn ohotypauso veshenstvovannoi konstruktsyy [Determination of efficiency of work of a parti-tion mixer of a corridor type of the advanced design ] ] /V.A. Yarkyn, S.M. Epoian, H.Y. Su-khorukov// Naukovyi visnyk budivnytstva. - Kharkiv: KhNUBA, KhOTV ABU. - 2018.-T.91, №1.- pp.210-214.

Epoian S.M. Metod povyshenyia effektyvnosty smeshenyia pryrodnoi vody s reahentom y metody kaprovedenyia yssledovanyi [The method of increasing the efficiency of mixing natural water with the reagen t and the method of research] / S.M. Epoian, H.Y. Sukhorukov, V.A. Yarkyn// Naukovyi visnyk budivnytstva. - Kharkiv: KhNUBA, KhOTV ABU.-2016.-№1(83).- pp.187-193.

Proskurnyn O. A., Zakharchenko N. Y., Kapanyna O. Y. Normyrovanye sostava teploo-bmennykh stochnykh vod[Background of the heat exchange composition] // Naukovyi visnyk budivnytstva. - Kharkiv: KhNUBA, KhOTV ABU.-2018.-№4(92).- pp..226-231.

DBN V.2.6-220:2017 Pokryttia budivel i sporud. [DBN B.2.6-220: 2017 Covering of buildings and structures]: — K.: Ministerstvo rehionalnoho rozvytku ta budivnytstva Ukrainy, 2017. — 43 p.

DSTU-N B V.1.2-18:2016. Nastanova shcho doobstezhennia budivel i sporud dlia vyznachennia ta otsinkyyik tekhnichnoho stanu. [DSTU-N B B.1.2-18: 2016. Guidelines for inspection of buildings and structures to determine and evaluate their technical condition] – K.: DP «UkrND-NTs», 2017. – 45 p.

Published

2021-03-01