Analysis of technological methods of minimizing residual internal stresses at slm

Authors

  • Adjamskiy S.
  • Kononenko A.
  • Podolskyi R.

DOI:

https://doi.org/10.34185/1562-9945-3-152-2024-01

Keywords:

additive manufacturing, residual internal stresses, parameters, SLM technology.

Abstract

Additive manufacturing (hereinafter – en. AM) is a modern set of technologies that make it possible to quickly and qualitatively create products with a unique geometry that are impossible or difficult to produce by traditional production methods. Currently, re-searchers pay attention to two major areas, namely AM quality systems and the search for new regularities in already well-known materials that were produced in a traditional way. This technology has a number of advantages for the manufacture of aerospace products, but, like all production technologies, this technology has a number of disadvan-tages and problems. Residual internal stresses are one of the features of metal materials produced by layer-by-layer fusion using SLM technology, but they can significantly affect mechanical properties and geometric parameters. Their presence is especially important for AM materials, which inevitably lead to significant internal stresses. In this regard, it is important to minimize residual stresses in the process of manufacturing parts using SLM technology. To prevent deviations in the geometry of the part, it is necessary to take into account the ratio between the density of the specific energy supplied and its absorp-tion during the process. However, it is difficult to predict the optimal technological pa-rameters and strategies for building the SLM process for polycrystalline materials, since the quality of the product depends on a large number of factors. The search for ways of preliminary assessment and the development of measures to reduce residual stresses in the manufacture of parts using SLM technology is an urgent task of modern materials science. Thus, the issue of reducing the influence of internal stresses requires a funda-mental understanding of their influence on the geometric parameters and service charac-teristics of AM materials..

References

Vayre B., Vignat F., Villeneuve F. (2012). Metallic additive manufacturing: state-of-the-art review and prospects. Mech. Ind.. 13. Р. 89–96.

Gu D. D., Meiners W., Wissenbach K., Poprawe R. (2012). Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mat. Rev. 57 (3).

Р.133–164.

Wong K. V., Hernandez A. (2012). A review of additive manufacturing, ISRN Mech. Eng.

Р. 1–10.

Brackett D., Ashcroft I., Hague R. (2011). Topology optimization for additive manufacturing. Proc. SFF Symp. Austin Texas. Р.348–362.

Adjamskyi S.V., Kononenko G.A., Podolskyi R.V. (2020). Influence of technological parameters of SLM-process on porosity of metal products. The paton welding journal. 10. р.13-19. DOI: https://doi.org/10.37434/tpwj2020.10.03

Adjamskiy S., Kononenko G., Podolskyi R. Mechanical properties of heat-resistant superalloy Inconel 718 obtained by selective laser melting and heat treatment under different load directions. Scientific Journal of TNTU (Tern.). 2020. 99 (3). Р. 75–85. DOI: https://doi.org/10.33108/visnyk_tntu2020.03

Kononenko G. A., Adzhamskij S. V., Podolskij R. V., Safronova O. A., Shpak E. A. (2022). Porivnyalni doslidzhennya mehanichnih vlastivostej zrazkiv stali 316L, vigo-tovlenih na mashini Alfa-150 na vidpovidnist svitovim analogam [in Ukrainian]. Fun-damentalni ta prikladni problemi chornoyi metalurgiyi, 36. 370-378. DOI: https://doi.org/10.52150/2522-9117-2022-36-370-378

Adzhamskij S. V., Podolskij R. V., Kononenko G. A. (2021). Doslidzhennya vplivu shorstkosti na vlastivosti zrazkiv zi stali AISI 316L metodom reyestraciyi makroloka-lizacijnih poliv [in Ukrainian]. Sistemni tehnologiyi, 4 (135), 3-11. DOI: https://doi.org/10.34185/1562-9945-4-135-2021-01

Adjamskiy S.V., Kononenko G.А., Podolskyi R.V. Influence of SLM-process parameters on the formation of the boundaries of parts of heat-resistant nickel alloy INCONEL 718. Space Science and Technology. 2021. 27, 6. с. 105-114. DOI: https://doi.org/10.15407/knit2021.06.105

Parida A.K., Maity K. (2018). Comparison the machinability of Inconel 718, In-conel 625 and Monel 400 in hot turning operation. Engineering Science and Technol-ogy, an International Journal. 21. Р. 364–370.

Criales L.E., Arısoy Y.M., Lane B. (2017). Laser powder bed fusion of nickel alloy 625: experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis. Int J Mach Tools Manuf.121. Р. 22–36.

Wang D. (2012). Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM. Int J Adv Manuf Technol. 58. P. 1189–1199.

Dilip J.J.S., Zhang S., Teng C. (2017). Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabri-cated by selective laser melting. Progress in Additive Manufacturing. 2. P.157–167.

Adjamskiy,S., Kononenko,G., Podolskyi,R., Badyuk,S. (2022). Implementation Of Selective Laser Melting Technology In Ukraine. Kyiv, Naukova Dumka. 116p. [in Ukrainian] DOI: https://doi.org/10.15407/978-966-00-1856-3

Kononenko G. A., Adzhamskij S. V., Podolskij R. V., Safronova O. A., Shpak E. A., Deryagin A. I. (2023). Vnutrishni zalishkovi napruzhennya v aditivnomu virobnictvi. (Oglyad) [in Ukrainian]. Fundamentalni ta prikladni problemi chornoyi metalurgiyi. 37. S. 434-446. DOI: https://doi.org/10.52150/2522-9117-2023-37-434-446

Downloads

Published

2024-04-17