Semantic analysis of the basic concepts of research on the construction of an information-analytical system for the training of scientific personnel

Authors

  • M. Rostoka

DOI:

https://doi.org/10.34185/1562-9945-2-139-2022-12

Keywords:

information-analytical system, information environment, information-analytical interaction, semantic environment, ontological modeling, methodology of building systems, scientific staff

Abstract

The relevance of support for research on the methodology of building information and analytical systems is determined by the separation and justification of basic concepts. In this context, based on view of the relevance of the topic of the article on the results obtained analytically, before proceeding to the practical aspects of building any information-analytical system, given the transdisciplinarity of scientific knowledge, it is always appropriate to conduct structural-logical or semantic analysis terminology. This makes it possible to clarify the essence and content of the basic concepts of research and to outline the vector of further research. It is noted that in the conditions of modern information communications all objects of information-analytical interaction, regardless of their origin, are directly or indirectly interconnected. The purpose of the research is to provide basic categorical-conceptual support for doctoral research on the methodology of building information and analytical systems. In this sense, the methods of content analysis, semantic and comparative analysis, ontological modelling, etc. were used, which allowed identifying several types of approaches to determining the amount of information exchanged by objects in the process of information interaction: algorithmic, entropic, combinatorial, ontological, semantic, synergistic, transdisciplinary and pragmatic. The results and conclusions of the research are in the range of issues that allow us to understand the essence of the definition of «Information-Analytical System»; the semantics of the terms «Information», «Information Object», «Information Environment», «Information Space», «Information-Analytical Interaction», «Semantic Environment», etc.; the special nature of information as such, which distinguishes it from matter and energy, is emphasized; it is noted that information exists only in the presence of its carriers, which have a material and energy form; the relationship between the concepts of «Information Environment», «Information-Analytical Field» and «Information Space» is revealed, which is derived from the content of the basic concept of «Information». The ontological approach as a basic tool of semantic (informational) analysis is studied (within which it is possible to calculate the semantic similarity of semantic interpretations of text tokens in relation to the immediate semantic environment, i.e. context); it is noted that the construction of ontologies is based on the fixation of logical constructions that contain dictionaries of terms of the thematic area and on the description of the definitions of these terms, their theoretically possible and impossible semantic connections; it is noted that the basis for building an ontology can be user requests; the mathematics of the process of ontological modeling is briefly presented. The current definition of «Information-Analytical System» based on the results of semantic analysis is given.

References

Bykov V., Rudenko V. (1996). Systemy upravlinnia informatsiinymy bazamy danykh v osviti: navch. posib., IZMN, 288 s.

Varenko V. M. (2014). Informatsiino-analitychna diialnist: navch. posib. Kyiv: Universytet «Ukraina», 417 s.

Viatkyn V. B. (2010). Vvedenye v synerhetycheskuiu teoryiu ynformatsyy. Ynformatsyonnыe tekhnolohyy. Vyp. 12. S. 67–73.

Hlushkov V. M. (1964). O kybernetyke kak nauke. Kybernetyka, mыshlenye, zhyzn, S. 53–62.

Dubas O. P. (2010). Informatsiino-komunikatsiinyi prostir: poniattia, sutnist, struktura. Suchasna ukrainska polityka. Polityky i politolohy pro nei. Vyp. 19. S. 223–232.

Zheliazkova V. V. (2018). Semantyka: teoriia i praktyka: navch.-metod. posib. dlia stud. spets. 035 Filolohiia («Prykladna linhvistyka»). Mykolaiv: Ilion, 180 s.

Zakharova V. I., Filippova L. Ya. (2013). Osnovy informatsiino-analitychnoi diialnosti: navch. posib. Kyiv: Vyd-vo «Tsentr uchbovoi literatury», 336 s.

Zybin S. V., Khoroshko V. O. (2019). Produktyvnist i optymizatsiia spetsializovanykh system obrobky informatsii iz strukturoiu, yaka konfihuruietsia prohramno. Informatics & Mathematical Methods in Simulation. Vol. 9. № 3. pp. 120–130. 11p.

Zybin S. V. (2020). Optymizatsiia rozrobky struktur i trafikiv peredachi informatsii v zakhyshchenykh korporatyvnykh merezhakh. Kilkisna optymizatsiia. Kybernetyka: osvita, nauka, tekhnika. Vyp. 3 (7). S. 103–114.

Kademiia M. Yu. (2009). Informatsiino-komunikatsiini tekhnolohii navchannia: terminolohichnyi slovnyk. Lviv: Vyd-vo «SPOLOM», 260 s.

Kolmohorov A. N. (1965). Try podkhoda k opredelenyiu poniatyia «kolychestvo ynformatsyy». Problemы peredachy ynformatsyy. T. 1. Vyp. 1. S. 3–11.

Krыvыi S. L. (2016). Formalyzovannыe ontolohycheskye modely v nauchnыkh yssledovanyia. Upravliaiushchye systemы y mashynы. Vyp. 3. S. 4–15.

Kuznetsov N. A. (2001). Ynformatsyonnoe vzaymodeistvye v tekhnycheskykh y zhyvыkh systemakh. Ynformatsyonnыe protsessы, T. 1, № 1, S. 1–9.

Maslianko P. P., Lissov P. M. (2007). Informatsiini resursy ta zasoby yikh stvorennia. Suchasni tendentsii rozvytku informatsiinykh tekhnolohii : mater. Vseukr. nauk.-prakt. konf. (11–13 hrudnia 2006 r., m. Luhansk), S. 141–145.

Maslianko P. P., Lissov P. M. (2007). Informatsiino-komunikatsiini systemy ta tekhnolohii obrobky informatsiinykh resursiv. Visnyk KUEITU «Novi tekhnolohii». № 1–2 (15–16). S. 20.

Norenkov Y. P. (2010). Yntellektualnыe tekhnolohyy na baze ontolohyi. Ynformatsyonnыe tekhnolohyy. № 1. S. 17–24.

Ozhereleva T. A. (2014). Ob otnoshenyy poniatyi ynformatsyonnoe prostranstvo, ynformatsyonnoe pole, ynformatsyonnaia sreda y semantycheskoe okruzhenye. Mezhdunarodnыi zhurnal prykladnыkh y fundamentalnыkh yssledovanyi. № 10

(Ch. 2) S. 21–24.

Palahyn A. V., Yakovlev Yu .S. (2005). Systemnaia yntehratsyia sredstv kompiuternoi tekhnyky. Vynnytsa : UNIVERSUM. 680 s.

Sokolov B. V., Alekseev A. V. (2001). Teoryia ynformatsyy: эvoliutsyia vzghliadov y podkhodov, sovremennыe podkhodы y vozmozhnыe puty razvytyia. Problemы ynformatyzatsyy. Vyp. 3. S. 26–29.

Shennon K. (1963). Rabotы po teoryy ynformatsyy y kybernetyke, 830 s.

Shreider Yu. A. (1965). Ob odnoi modely semantycheskoi teoryy ynformatsyy. Problemы kybernetyky. Vыp. 13.

Guraliuk A. G., Rostoka M. L., Cherevychnyi G. S., Zakatnov D. O., Pavlysh T. H. (2021). Dual-Component Ontograph Visualization. Journal IOP Conf. Ser.: Mater. Sci. Eng. Vol. 1031 (012119). In: Scopus, Web of Science, Springer, Cham. DOI: https://doi.org/10.1088/1757-899X/1031/1/012119 (in English).

Hartley R. V. L. (1928). Transmission of Information. Bell System Technical Journal. 7. С. 535–63 [per.: Khartly R. V. L. (1959). Peredacha ynformatsyy. Teoryia ynformatsyy y eё prylozhenyia. Fyzmathyz.

Hartley R. V. L. (1955). Information Theory of The Fourier Analysis and Wave Mechanics, August 10, Publication Information Unknown.

Katifori A., Halatsis C. (2007). Ontology Visualization Methods – a Survey. ACM Computing Surveys (CSUR). Vol. 39. № 4. URL:

http://www.dit.unitn.it/~p2p/RelatedWork/Matching/a10-katifori.pdf.

Kuzmenko O., Rostoka M., Dembitska S., Topolnik Y., Miastkovska M. (2022). Innovative and Scientific ECO Environment: Integration of Teaching Information and Communication Technologies and Physics; In: Auer, M.E., Hortsch, H., Michler, O., Köhler, T. (eds) Mobility for Smart Cities and Regional Development – Challenges for Higher Education. ICL 2021. Lecture Notes in Networks and Systems, Vol. 390 LNNS. In: WoS, Scopus, Springer, Cham. WOSUID: WOS:000754472400004, DOI: https://doi.org/10.1007/978-3-030-93907-6_4/ (in English).

Rostoka M., Guraliuk A., Kuzmenko O., Bondarenko T., Petryshyn L. (2021). Ontological Visualization of Knowledge Structures Based on the Operational Management of Information Objects. In: Auer M. E., Rüütmann T. (eds). Advances in Intelligent Systems and Computing. Vol. 1329. In: Scopus, Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-68201-9_82 (in English).

Published

2022-03-30