FEATURES OF FRACTIONAL APPLICATION DERIVATIVES FOR MODELING TEMPERATURE AND MASS TRANSFER IN NON-EQUILIBRIUM CONDITIONS
DOI:
https://doi.org/10.34185/1991-7848.itmm.2022.01.033Ключові слова:
fractal environment, equations with fractional derivative, anomal diffusion (heat conductivity), thermoelasticity, laplace transform, function mittag - leflera, qualitative and quantitative regularitiesАнотація
A new class of problems on heat and mass transfer in fractal media, which is extremely topical for polymer structures, percolation clusters, amorphous semiconductors, porous materials, etc., is considered. The ideology of considering these problems stems from deep statistical, thermodynamic considerations and mathematically reduces to solving differential equations with fractional derivatives with respect to time and spatial variables.
Посилання
R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach // Phys. Rep. – 2000. – 339, p. 1-77.
S. Lepri, R. Livi, A. Politi. Anomalous heat conduction, in book: Anomalous transport: foundations and applications edited by R. Klages, G. Radons, I.M. Sokolov, — Wiley, VCH (Berlin), 2008, – 584 p.
A.M. Nakhushev. Drobnoe yschyslenye y eho prymenenye. - M.: Fyzmatlyt, 2003. - 272 s.
Uchaikyn V.V. Avtomodelnaia anomalnaia dyffuzyia y ustoichyvыe zakonы. // UFN, - 2003. – t. 173, №8, – S. 847-876.
Smyrnov B.M. Эnerhetycheskye protsessы v makroskopycheskykh fraktalnыkh strukturakh. // UFN. – 1993. – t. 161, №6. – S. 171-200.
Beibalaev V.D. Matematycheskaia model teploperenosa v sredakh s fraktalnoi
strukturoi. // Matematycheskoe modelyrovanye. — 2009. – 21: 5. – S. 55-62.
Boyadjiev L., Scherer R. Fractional extensions of the temperature field problem in oil strata. // Kuwait. J. Sci. Eng. — 2004. – 31 (2). – p. 15-32.
Povstenko Y.Z. Fractional heat conduction equation and associated thermal stresses. // J. Thermal Stresses. — 2005. – 28. – p. 83-102.
Povstenko Y. Signalling problem for time-fractional diffusion-wave equation in a half-plane. // Fractional calculus and applied analysis. — 2008. – vol. 11, 3. – p. 329-352.
Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. // Chaos, Solitons and Fractals. — 1996. – 7. – p. 1461-1477.
Mainardi F., Gorenflo R. Time-fractional derivatives in relaxation processes: a tutorial survey. // Fractional calculus and applied analysis. — 2007. – vol. 10, 3. – p. 269-308.