Mechanical grinding of components of silicone manganese charge to improve the reproducibility

Authors

  • Yana Myanovskaya
  • Yuriy Proyak
  • Lydmila Kamkina
  • Ruslan Ankudinov

DOI:

https://doi.org/10.34185/1991-7848.2020.01.07

Keywords:

silico manganese, charge, dispersed materials, mechanical activation, kinetics of carbon reduction

Abstract

The present state of smelting of ferrosilicon manganese due to the deterioration of the quality of manganese concentrates is characterized by low extraction of manganese, silicon and an increase in the slag multiplicity. This requires the improvement of smelting technology with the use of charge materials with high reactivity, which is ensured by their preliminary preparation for melting.
One method of preparation may be the method of mechanical activation of components separately or joint activation to provide high rates of the degree of recovery of elements in the metal phase.
In order to attract mechanically activated fine materials for smelting of si-licomanganese, the basic technological requirements of preliminary preparation of briquetting briquette are grounded. Using hydrolysis lignin as a binder provides strong briquettes. At pressing pressures of 450-550 kg/cm2, the strength of the raw braces is 65-68 kg/cm2, and the fired in a reducing atmosphere at temperatures up to 1000оС, the strength reaches 160-185 kg/cm2.
The study of the kinetics of joint carbon-thermal reduction of manganese and silicon at temperatures of 1250-1600 ° C with continuous weight loss control of the charge batch shows that the degree of recovery of the fractured, mechanically activated charge is 1.5 - 1.8 times higher than the reproducibility of the charge component 3- 0 mm and 2-3 times higher than the degree of recovery of the factory charge.
Based on the results of chemical analysis of the experimental metal samples, it is shown that the application of mechanical activation in the joint processing of the mixture is significantly higher characteristics of extraction of manganese in the alloy by reducing the pre-formation of the slag phase and the recovery in this case of manganese from the slag melt

References

Li, Xuan-hai; Zhang, Yan-juan; Pan, Liu-ping; Wei, Yan-song Effect of mechanical activation on dissolution kinetics of neutral leach residue of zinc calcine in sulphuric acid/ Transactions of nonferrous metals society of china. Том: 23 Выпуск: 5. Стр.: 1512-1519. DOI: 10.1016/S1003-6326(13)62624-2].

Balaz, P; Alacova, A; Achimovicova, M; Ficeriova, J; Godocikova, E. Mechanochemistry in hydrometallurgy of sulphide minerals./ Hydrometallurgy. 2005. Том: 77. Выпуск: 1-2. Стр.: 9-17. DOI: 10.1016/j.hydromet.2004.09.009.

Balaz, P. Mechanical activation in hydrometallurgy./ International journal of mineral processing. 2003. Том: 72. Выпуск: 1-4. Стр.: 341-354. DOI: 10.1016/S0301-7516(03)00109-1

Amer, Am. Processing of ras-shait chromite deposits./ Hydrometallurgy. 1992. Том: 28. Выпуск: 1. Стр.: 29-43. DOI: 10.1016/0304-386X(92)90063-6

Davin Tan, Felipe García. Main group mechanochemistry: from curiosity to established protocols. (Tutorial Review) Chem. Soc. Rev., 2019,Vol 48. S. 2274-2292. DOI: 10.1039/C7CS00813A

Cagnetta, G., Huang, J., Lomovskiy, I.O., Yu, G., Tailoring the properties of a zero-valent iron-based composite by mechanochemistry for nitrophenols degradation in wastewaters./ Environ. Technol. 2017a. 1e12. http://dx.doi.org/10.1080/09593330.2017.1282985.

Boldyreva, E., Mechanochemistry of inorganic and organic systems: what is similar, what is different Chem. Soc. 2013. Rev. 42, S. 7719. http://dx.doi.org/10.1039/c3cs60052a.

Cagnetta, G., Huang, J., Wang, B., Deng, S., Yu, G., 2016a. A comprehensive kinetic model for mechanochemical destruction of persistent organic pollutants. Chem.Eng. J. 291, 30e38. http://dx.doi.org/10.1016/j.cej.2016.01.079.

T F Grigoryeva, A A Novakova, T Yu Kiseleva, A P Barinova, A I Ancharov,T L Talako, I A Vorsina, K D Becker, V Šepelák, S V Tsybulya,O A Bulavchenko, N Z Lyakhov. Mechanochemical production of nanocomposites of metal/oxide and intermetallic/oxide systems./ The 13th International Conference on Rapidly Quenched and Metastable Materials IOP Publishing Journal of Physics: Conference Series 144 (2009) 012076 http://dx.doi.org/10.1088/1742-6596/144/1/012076

Welham NJ. Activation of the carbothermic reduction of manganese ore. International Journal of Mineral Processing, Vol.67, No.1-4, 187-198, 2002. DOI10.1016/S0301-7516(02)00045-5 https://www.cheric.org/research/tech/periodicals/view.php?seq=1004402

D.Guzmán, J.Fernández, S.Ordoñez, C.Aguilar, P.A.Rojas, D.Serafini. Effect of mechanical activation on the barite carbothermic reduction./ International Journal of Mineral Processing. Volumes 102–103, 25 January 2012, Pages 124-129. https://doi.org/10.1016/j.minpro.2011.11.008

Guo Chen, Jin Chen, Jinhui Peng. Effects of mechanical activation on structural and microwave absorbing characteristics of high titanium slag./ Powder Technology. Volume 286, December 2015, Pages 218-222. https://doi.org/10.1016/j.powtec.2015.08.021

V.I. Novozhonov, P.V. Polyakov, T.R. Gilmanshina i dr. Mehanoaktivaciya oksidnyh i sloistyh materialov: kollektivnaya monografiya/ Krasnoyarsk:Sib.feder.un-t, 2015 – 164s. ISBN 978-5-7638-3219-8

Chudakov, M.I. Promyshlennoe ispolzovanie lignina Tekst. / M.I. Chudakov. M.: Lesn. prom-t, 1983. 200 s.

Holkin, Yu.I. Tehnologiya gidroliznyh proizvodstv Tekst. / Yu.I. Holkin. M.: Lesn. prom-t, 1989. 496 s.

Berbenni, V., Marini, A. Oxidation behaviour of mechanically activated Mn3O4 by TGA/DSC/XRPD./ Materials Research Bulletin. Volume 38, Issue 14, 26 November 2003, Pages 1859-1866.. DOI: 10.1016/j.materresbull.2003.07.008

Boyrazlı, M., Arancı Öztürk, E. Effect of advanced milling on carbothermal reduction of pyrolusite (MnO2) by carbonized tea plant waste. Journal of Molecular Structure. Volume 1198, 15 December 2019, Номер статьи 126875. DOI: 10.1016/j.molstruc.2019.126875

Göktaş, M. Mechanical activation applications in mineral processing(Review). Scientific Mining Journal. Volume 57, Issue 1, March 2018, Pages 57-66.

Kim, D.-Y., Jeong, I.-H., Jung, S.-M. Kinetic study on carbothermic reduction of MnO2 with graphite. Ironmaking and Steelmaking. Volume 43, Issue 7, 8 August 2016, Pages 526-532. DOI: 10.1080/03019233.2015.1114307

Ostrovski, O.I. , Webb, T.J.M. Reduction of Siliceous Manganese Ore by Graphite. ISIJ International. Volume 35, Issue 11, 1995, Pages 1331-1339. DOI: 10.2355/isijinternational.35.1331

O. N. Baklanova, V. A. Drozdov, A. V. Lavrenov, A. V. Vasilevich, I. V. Muromtsev, M. V. Trenikhin, A. B. Arbuzov, V. A. Likholobov, O. V. Gorbunova. Mechanical activation of graphite in air: A way to advanced carbon nanomaterials. Journal of Alloys and Compounds. May 2015. DOI: 10.1016/j.jallcom.2015.05.090.

Published

2020-03-27