STUDY OF THE DUSTY SOLID FUEL COMBUSTION AND THE INFLUENCE OF ITS INDIVIDUAL PROPERTIES ON THE COURSE OF THE COMBUSTION INITIAL STAGES

Authors

  • T. Khokhlova
  • Y. Stupak

DOI:

https://doi.org/10.34185/

Keywords:

pulverized fuel, stages of combustion, single fuel particles, biofuel, release of volatile substances, ignition temperature, completeness of combustion

Abstract

The article discusses separate methodological approaches to modeling the combustion of pulverized fuel in laboratory conditions, which have been developed over the past decades, and separate results of research into the combustion of individual particles using high-speed photo and video recording. It is shown that today clear ideas have been formed regarding the process of burning both individual fuel particles and their burning in a torch. It is noted that for some types of fuel, the division of the combustion process of particles into stages is very conditional, because due to the nature (origin) of the fuel raw materials, individual stages may overlap one another or be absent altogether. The thesis is put forward that, regardless of the criteria for the efficiency of fuel use, for the development of the most effective technologies for its combustion, not only the specifics (conditions) of certain units and processes, but also the nature (origin) of the fuel raw materials used, as it directly determines physics and chemistry of the combustion process. The authors experimentally confirmed a close relationship between the ignition temperature of the fuel and the release of volatile substances from it, in particular, it was found that the ignition temperature of the fuel functionally depends on the content of CO in volatile substances, the release of which from the fuel can be one of the important criteria when assessing its flammability. The thesis is put forward about the expediency of using the "ignition temperature" parameter as such, which should be taken into account (and in some cases - determined), since it is closely related to both the time to ignition of fuel particles and the completeness of its combustion in the initial stages, which was proved experimentally.

References

Babii V.I., Ivanova I.P. Pro temperaturu vuhilnykh chastynok pry horinni // Teploenerhetyka, 1968. – №2. – S. 34-37.

Babii V.I., Kuvaiev Yu.F. Horinnia vuhilnoho pylu i rozrakhunok pylovuhilnoho fakelu. – Enerhoatomizdat, 1986. 209 s.

Babii V.I., Ivanova I.P. Tryvalist zaimannia i horinnia chastok pylu riznykh marok vuhillia // V kn.: Horinnia tverdoho palyva (Pratsi III konf. z horinnia tverdoho palyva). – Novosybirsk: Nauka, 1969.– S. 82-92.

Riaza J et al. Ignition and combustion of single particles of coal and biomass // Fuel (2017), http://dx.doi.org/10.1016/j.fuel.2017.04.011

Bohdandi L., Enhel H.Iu. Vidnovlennia zaliznykh rud. Per. Z nim. – Metalurhiia, 1971. – 519 s.

Jappe Frandsen F., Wu H., Glarborg, P. et al. (2011). DTU Research Database. PSO Project 10085: Final Report – Co-Firing of Coal and RDF in Suspension. DTU Chemical Engineering. https://backend.orbit.dtu.dk/ws/portalfiles/portal/58570614/prod21378460578762.R1202_PSO_Project_10085_Co_Firing_of_Coal_and_RDF_in_Suspension.pdf

Variny, M., Varga, A., Rimár, M. et al. Advances in Biomass Co-Combustion with Fossil Fuels in the European Context: A Review. Processes 2021, 9, 100. https://doi.org/10.3390/pr9010100

Marek Ewa, Stańczyk Krzysztof. Case studies investigating single coal particle ignition and combustion // Journal of Sustainable Mining. Vol. 12 (2013), No. 3, pp. 17–31. https://doi.org/10.7424/jsm130303

Khatami R., Stivers C., Joshi K. et al. (2012) Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O2/N2 and O2/CO2 atmospheres // Combustion and Flame Vol. 159, pp. 1253–1271. https://doi.org/10.1016/j.combustflame.2011.09.009

Xiaojing Bai, Gang Lu, Tom Bennet et al. Combustion behavior profiling of single pulverized coal particles in a drop tube furnace through high-speed imaging and image analysis // Experimental Thermal and Fluid Science 85 (2017) 322–330. http://dx.doi.org/10.1016/j.expthermflusci.2017.03.018

Levendis Y.A., Joshi K., Khatami R. et al. Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse. Combustion and Flame. (2011) Vol. 158, pp. 452–465. https://doi.org/10.1016/j.combustflame.2010.09.007

Tang G., Zhang H., Zhu M. et al. Experimental Study on the Ignition Process of Single Coal Particles at Microgravity // Microgravity Science and Technology. (2010) Vol. 22, pp. 27–35. https://doi.org/10.1007/s12217-008-9101-9

Ponzio A., Senthoorselvan S., Yang W. et al. Ignition of single coal particles in high-temperature oxidizers with various oxygen concentrations // Fuel (2008): Vol. 87, pp. 974–998. https://doi.org/10.1016/j.fuel.2007.06.027

Murphy J.J., Shaddix C.R. (2006): Combustion kinetics of coal chars in oxygen-enriched environments // Combustion and Flame Vol. 144, pp. 710–729. https://doi.org/10.1016/j.combustflame.2005.08.039

Stupak Yu.O. Vyvchennia protsesu horinnia pylovuhilnoho palyva u laboratornykh umovakh // Izv. vuziv. Chorna metalurhiia. 1993. №8. S. 35-36.

Stupak Yu.O. Pro deiaki osoblyvosti laboratornykh doslidzhen protsesu horinnia pylopodibnoho palyva / V mat-lakh mizhnarodnoi naukovo-praktychnoi konferentsii «Informatsiini tekhnolohii v metalurhii ta mashynobuduvanni - ITMM’2021» (16 – 18 bereznia 2021 r., Dnipro, Ukraina). – Dnipro: NMetAU, 2021. –S. 47-52. https://doi.org/10.34185/1991-7848.itmm.2021.01.006

Stupak Yu.O. Rozrobka metodiv intensyfikatsii horinnia tverdykh dodatkiv, shcho mistiat vuhlets, u domennii pechi. Dyss. na zdobuttia nauk. st. kand. tekhn. nauk zi spets. 06.16.02. – Dnipropetrovsk, 1994. – 205 s.

Gudenau H. Kohlenstaubeinblasen in den Hochofen - Steirung der Einblasrate durch den Einsatz von Kohlemischungen / H.W. Gudenau, B. Korthas, R. Kiesler, L. Birkhauser //

Stahl und Eisen. – 1990. –№11. – P. 35-40.

Carpenter A. Injection of coal and waste plastics in BFs // United States Energy Association (USEA). (2010) http://surl.li/spixc

Clean Coal Technologies in Japan. Technological Innovation in the Coal Industry. 2nd Edition. NEDO. Kawasaki City, 2015. 148 p. https://www.nedo.go.jp/content/100861237.pdf

Commission welcomes completion of key ‘Fit for 55' legislation, putting EU on track to exceed 2030 targets // European Commission official portal. – [Electronic resource]. – Access mode: https://ec.europa.eu/commission/presscorner/detail/en/IP_23_4754

The government approved the goals of Ukraine's climate policy until 2030 // Government portal: The single web portal of the executive authorities of Ukraine. – [Electronic resource]. – Access mode: https://www.kmu.gov.ua/news/uryad-shvaliv-cili-klimatichnoyi-politiki-ukrayini-do-2030-roku

Skliar M.H., Tiutiunnykov Yu.V. Khimiia tverdykh horiuchykh kopalyn. –K.:

Vyshcha shkola, 1985. – 247 s.

Stupak Yu.O. Metod dyferentsiinoho termichnoho analizu v doslidzhenniakh destruktsii tverdoho pylopodibnoho palyva za vysokoi shvydkosti nahrivannia / V mat-lakh mizhnar. nauk.-prakt. konf. «Informatsiini tekhnolohii v metalurhii ta mashynobuduvanni - ITMM’2024» (10 – 11 kvitnia 2024 r., Dnipro, Ukraina). – Dnipro: UDUNT, 2024. –S. 81-89. DOI: 10.34185/1991-7848.itmm.2024.01.014

Stupak Yu., Khokhlova T. (2021) On some aspects of the study of pulverized coal and fuel mixtures combustion in a drop tube furnace. Сучасні проблеми металургії. Наукові вісті. №24. 2021. – С. 119-131. https://doi.org/10.34185/1991-7848.2021.01.12

Bondarenko P.K. Modeliuvannia protsesu horinnia pylovuhilnoho palyva u furmi domennoi pechi / P.K. Bondarenko, V.I. Kotov, Yu.O. Stupak // Izv. vuzov. Chorna metalurhiia. –№7. – 1990. –S.103.

Vuhillia. Tekhnichnyi analiz : DSTU ISO 17246:2010. [Chynnyi vid 2012–01–07] . – Kyiv: Derzhspozhyvstandart Ukrainy, 2014. – 4 s.

Palyvo tverde mineralne. Metody vyznachennia zolnosti. HOST 11022-95 (ISO 1171-97). [Chynnyi vid 1997–07–01]. – Minsk: VPK «Vyd-vo standartiv», 1996. -8 s.

Downloads

Published

2024-05-24