Radiationsensitivityofplanarnpn structures, manufacturedonsilicon, isovalentlydopedwithgermanium (nSiGe)

Authors

  • Tatyana Vladimirovna Kritskaya
  • Sergey Vitalievich Bytkin

DOI:

https://doi.org/10.34185/1991-7848.2019.01.02

Keywords:

germanium-doped silicon, degradation of amplifying properties, test transistor, ionizing radiation

Abstract

The doping by isovalent impurities (first of all, germanium (Ge)) has been proposed for increasing of the silicon radiation resistance.The most convenient structure for experimental measurements of h21E degradation under irradiation is a test npn transistor IC with dielectric isolation, the radiation degradation of which completely determined by the properties of a uniformly doped n-type SiGe single crystal wafer.The purpose of this work was a comparative assessment of the h21E degradation of ICs test npn structures, fabricated on nSiGe with different Ge concentrations and base widths to the action of α-radiation to confirm the technological applicability of isovalently doped Ge silicon for the formation of device structures that work in the fields of ionizing radiation.The measurements were carried out on the CZ-Si, orientation <111> with ρ ≈ 0.2 Ω · cm, NOi ≈ 7 ∙ 1017 cm-3, NСi<5 ∙ 1016 cm-3, doped with germanium and the controls under identical conditions.The radiation sensitivity of npn structures fabricated on nSiGe was simulated using MathCAD technology. Using the experimental values of h21E before and after irradiation and using standard statistical methods, equations,describing the degradation of npn structures depending on the level of isovalent doping and the geometry of the vertical structure,were obtained. The dose dependence of h21E indicates a significant difference in the degradation rate of the amplifying properties of test transistor structures fabricated on silicon with different Ge contents.It was shown that the test planar transistor amplifying properties degradation rate depends nonlinearly on both the concentration of isovalent impurity and the dose of α-irradiation, and the nature of the dependence is determined by the width of the base of the device. The dependences confirm the possibility of nSiGe use for the manufacturing of discrete semiconductor devices resistant to ionizing radiation.

References

Efstratia N. Sgourou, Yerasimos Panayiotatos, Ruslan V. Vovk, Alexander Chroneos. Toward Defect Engineering Strategies to Optimize Energy and Electronic Materials. Review. Appl. Sci. 2017, 7, 674; doi: 10.3390/app7070674 2. A. Alkauskas, M. D. McCluskey, Chris G. Van de Walle. Tutorial: Defects in semiconductors—Combining experiment and theory. Journal of Applied Physics, 119(18), 181101, 2016 https://doi.org/10.1063/1.4948245

A. Chroneos, C. A. Londos, E. N. Sgourou, P. Pochet. Point defect engineering strategies to suppress A-center formation in silicon. Appl. Phys. Lett. 99, 241901 (2011); doi: 10.1063/1.3666226. View online: http://dx.doi.org/10.1063/1.3666226

C. A. Londos, E. N. Sgourou, D. Hall, A. Chroneos. Vacancy-oxygen defects in silicon: the impact of isovalent doping. J. Mater. Sci.: Mater Electron (2014) 25:2395–2410 http://dx.doi.org/10.1007/s10854-014-1947-6

Kritskaya T. V. Sovremennyie tendentsii polucheniya kremniya dlya ustroystv elektroniki: monografiya / T. V. Kritskaya; Zaporozh. gos. inzhener. akad. - Zaporozhe: ZGIA, 2013. – 353 c.

Byitkin S.V., Kritskaya T.V. Modelirovanie S-obraznogo protsessa nakopleniya A- i E-tsentrov v izovalentno legirovannom germaniem kremnii v srede Statistica i MathCAD. «SuchasnI problemi metalurgIYi», # 21, vipusk 1- 2018. S. 29-35

Radiatsionnyie effektyi v integralnyih mikroshemah i metodyi ispyitaniy izdeliy poluprovodnikovoy elektroniki na radiatsionnuyu stoykost [Uchebn. pos. po distsipl. «Radiatsionnaya stoykost izdeliy elektronnoy tehniki»] / E.N. Vologdin, A.P. Lyisenko. - M.: Nauchno-obrazovatelnyiy tsentr Moskovskogo regiona v oblasti fundamentalnyih problem radiatsionnoy fiziki tverdogo tela i radiatsionnogo materialovedeniya. Moskovskiy gosudarstvennyiy institut elektroniki i matematiki. -2002. - 46 s.

S. Bytkin. Use of germanium doped silicon (n-SiGe〉) for manufacturing radiation hardened devices and integrated circuits. Conference Paper. October 1997. DOI: 10.1109/RADECS.1997.698872. Conference: Radiation and Its Effects on Components and Systems, 1997. RADECS 97. FourthEuropeanConferenceon)

Kritskaya T.V. Upravlenie svoystvami i razrabotka promyishlennoy tehnologii monokristallicheskogo kremniya dlya elektroniki i solnechnoy energetiki: diss. doktora tehn. nauk: 05.16.03 / Kritskaya Tatyana Vladimirovna. – Zaporozhe, 2006. – 375 s. 10. Troyan P.E. Mikroelektronika: Uchebnoe posobie. – Tomsk: Tomskiy gosudarstvennyiy universitet sistem upravleniya i radioelektroniki, 2007. - 346 s.

Deystvie pronikayuschey radiatsii na izdeliya elektronnoy tehniki / Pod red. E. A. Ladyigina. — M.: Sov. Radio, 1980. — 224 s. 12. Bytkin S.V. Konkurentnaya razvedka kon'yunkturno-tehnologicheskih perspektiv traditsionnogo i high-tech eksporta Ukrainyi: monografiya / Byitkin S.V.; ZaporIz. derzh. Inzh. akad. – ZaporIzhzhya: ZDIA, 2017. – 276s.

Bytkin S.V., Kritskaya T.V., Radin E.G., Goncharov V.I., Kunitskiy Yu.I., Kobeleva S.P. Eksperimentalnoe issledovanie harakteristik tiristorov, izgotovlennyih na Si, pri deystvii gamma-oblucheniya. Izvestiya vyisshih uchebnyih zavedeniy. Materialyi elektronnoy tehniki. #3, 2012, str. 45-48.

Byitkin S.V., Kritskaya T.V., Kobeleva S.P. Statisticheskiy analiz vliyaniya Ge na radiatsionnuyu i termicheskuyu stabilnost elektrofizicheskih harakteristik pribornyih n-p-n-p-struktur na osnove CZ-Si

. Izvestiya vyisshih uchebnyih zavedeniy. Materialyi elektronnoy tehniki. # 4, 2013, str. 42-48.

Byitkin S. V., Kritskaya T.V. Modelirovanie protsessa nakopleniya radiatsionnyih defektov v protsesse oblucheniya monokristallov Si

i Si

. // MetalurgIya. ZbIrnik naukovih prats ZaporIzkoYi derzhavnoYi InzhenernoYi akademIYi, vip.1(21). ZaporIzhzhya, 2010, stor.116-125.

Downloads

Published

2019-11-06