
«Системні технології» 1 (132) 2021 «System technologies»

ISSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

107

DOI 10.34185/1562-9945-1-132-2021-09

УДК 614.2+574/578+004.38

A.A. Litvinov

ON THE VARIATION OF ABSTRACT FACTORY PATTERN

Annotation. The work is devoted to revision of Abstract Factory Pattern for its practical use in

information system development. Provided variation of Abstract Factory Pattern significantly

simplifies the process of information system development making the system more flexible, ro-

bust to change and maintainable.

Key words: software development, design patterns, Factory pattern.

Modern information system can be represented as a set of interconnected com-

ponents organized to resolve a computing problem. To resolve the problem, compo-

nents work cooperatively interacting each other. Generally, the interconnections be-

tween the components can be divided into two large classes: static which means that

the connections between the components are defined before the system starts work-

ing and cannot be changed while the system is running; dynamic means that the

connections between the components are not predefined and can be changed with-

out stopping and rebooting the system, as a rule in such systems the interaction be-

tween the components is controlled by the subsystem-mediator (e.g. event bus,

blackboard architectures [1]).

In reality, in most cases, there is no need to make all the connections dynamic,

but, it is not an exaggeration to say that the flexibility of the system depends on the

ability to replace one component by another. Such ability provided by late binding

mechanism and polymorphism. Late binding/typing means that the types of all

names (variables and expressions) are not known until runtime [2]. Polymorphism

represents a concept in which a single name (e.g., variable declaration) may denote

objects of many different classes that are related by some common superclass or in-

terface. In modern systems interface polymorphism is considered preferable. Inter-

faces allow to define polymorphism in a declarative way, unrelated to implementa-

tion. Two objects are polymorphic with respect to a set of behaviors if they realize

the same interfaces.

Interface-based polymorphism allow to build information systems out of

loosely coupled components depended on interfaces instead of other components.

© Litvinov A.A., 2021

«Системні технології» 1 (132) 2021 «System technologies»

ISSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

108

Such system becomes interface-based, because instead of a system composed of real

components now it is being transformed to the system where dependencies (de-

pendency components) substituted by the interfaces [3]. We can see the same ap-

proach in all spheres of real life starting from automobiles and airplanes and ending

with business companies and social organizations. That is one of the best ways to

make a system flexible and consequently robust to change.

Thus, when we use interface-based approach the main goal we are intended to

achieve is to increase the flexibility and changeability of the system by constructing

it as a set of loosely coupled components.

The next question is, how to resolve which of the components should realize

the interface in the current assembly of the system (the system configured and ready

to run)? More precisely, how the system can make the choice of the components

should work in the current assembly substituting the interfaces they realize? To

make the process of building the components flexible the system needs mediators

able to create the realizations of the interfaces. That mediators called factories [4][5].

The main idea is as follows:

We need to produce a realization of an interface considering that there may be

several variations of the realization.

To produce the realization of the interface we need a component which knows

how to create that realization. In case of several realizations there is a need of sev-

eral factories producing different realizations of the same interface. It is notable that

the creation process can be nontrivial (e.g., can relate to resolving dependencies

etc.)

If we have several different creators-factories, we need to introduce an abstract

one realized by the set of concrete creators-factories. And when the system starts it

should simply choose the factory realization and then use it to create interface reali-

zations.

Abstract factory can be realized as an abstract class or as an interface. Interface

variant seems more conformable for the factories depended on other factories.

The next question related to the task of creating a huge number of different ob-

jects from the same level of abstraction (in reality, in most cases, the level is equal to

layer). In that case there is no need to create a huge number of factories, each per

interface (Fig. 1). That is the idea of the abstract factory pattern which offers the in-

terface for creating a family of related objects (Fig. 2) [6]. The client chooses the re-

alization of an abstract factory and gets a number of products produced by the cho-

sen factory which satisfy the client’s needs.

«Системні технології» 1 (132) 2021 «System technologies»

ISSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

109

Task definition. The problem of classical abstract factory solution is that the

adding of a new product to the domain implies the need of adding a method to all

the factories. When the number of types of products is high it causes maintenance

problems.

FactoryA

+Create():IProduct

ProductA

ProductB
<<Interface>>

IProduct

<<Interface>>

IFactory

+Create():IProduct

FactoryB

+Create():IProduct

Client

Figure 1 – Factory method pattern

FactoryA

+CreateProduct1():IProduct1

+CreateProduct2():IProduct2

Product1AProduct1B

<<Interface>>

IProduct1

<<Interface>>

IFactory

+CreateProduct1():IProduct1

+CreateProduct2():IProduct2

FactoryB

+CreateProduct1():IProduct1

+CreateProduct2():IProduct2

Client

<<Interface>>

IProduct2

Product2A Product2B

Figure 2 – Abstract factory pattern

Main part. To reduce the resistance of the infrastructure we can introduce in-

stead of huge number of methods (each per interface) one generic Create method

which takes as a parameter an interface and returns an appropriate realization of

that interface or throws an exception when it is not able to resolve the binding

(Fig.3).

«Системні технології» 1 (132) 2021 «System technologies»

ISSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

110

FactoryA

+Create<T>():T

Product1AProduct1B

<<Interface>>

IProduct1

<<Interface>>

IFactory

+Create<T>():T

FactoryB

+Create<T>():T

Client

<<Interface>>

IProduct2

Product2A Product2B

T

TT

Figure 3 – Abstract factory pattern with generic method

The simple implementation of the pattern is shown in listing 1. The collection

of “interface - realization” bindings represented within the constructor defines the

only one area of the class opened to change (open/close principle of SOLID) [7]. We

can make an abstract class Factory with the collection and generic Create method,

making all other factories its successors (Fig. 4). We can also add Create method with

parameters needed to create the object, but in our opinion, it is better to avoid creat-

ing an object with passing the parameters, we think it is better to use factories inter-

action instead. Factories interaction means that in case of factories dependency we

can inject the dependency factory into dependent one according to the dependency

injection principle of SOLID. In other words, in case when we need to create an ob-

ject produced by the first factory which is dependent on an object produced by the

second factory, it would be better to resolve the situation by injecting factory re-

sponsible for creation of dependency object into the factory used to create depend-

ent one. For example, the creation of use cases objects depends on repository objects

and to resolve such dependency the factory responsible for repository objects crea-

tion should be injected to factory responsible for use cases objects creation. The

code shown in listing 1 suggests “single object per multiple creation calls” model,

but it can be easily modified to realize “create object per each call” model by the

deep cloning of created objects. To make lazy loading variant of the solution, we can

use two dictionaries (one for “type of interface – type of realization” pairs and one

for “type of interface - realization” one) and we should also rebuild the logic of Cre-

ate method to examine whether the realization of the requested interface type has

already built, using “type of interface - realization” dictionary, and, if not, make it

using reflection API (i.e., Activator.CreateInstance method), using “type of interface

– type of realization” dictionary.

«Системні технології» 1 (132) 2021 «System technologies»

ISSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

111

Listing 1

public class ValidationRuleFactory : IValidationRuleFactory

{

 readonly Dictionary<Type, object> collection =

 new Dictionary<Type, object>();

 public ValidationRuleFactory()

 {

 this.collection.Add(typeof(IEnterOperationValidationRule),

 new EnterOperationValidationRule());

 }

 public T Create<T>()

 {

 Type type = typeof(T);

 if (!this.ruleCollection.ContainsKey(type))

 {

 throw new MissingMemberException(type.ToString() +

 "is missing in the rule collection");

 }

 return (T)this.ruleCollection[type];

 }

}

FactoryA

<<Interface>>

IFactory

+Create<T>():T

FactoryB

T

TT
Factory

-collection:Dictionary<Type, object>

+Create<T>():T

T

Figure 4 – Introducing generic factory responsible for object creation

The disadvantage of provided solution is additional effort connected to adding

new interface and its realization causing the modification of the factory constructor.

The code provided in the listing 2 could help solving that problem. Using reflection

mechanism, we can get all the classes of the assembly and bind them with the inter-

faces from the assembly responsible for the definition of interfaces. Thus, in the re-

sult we have the collection of “interface - realization” bindings filled automatically

by the factory. It is remarkable that classes and interfaces should follow predefined

naming conventions, but it could be considered as a positive point rather than some-

thing to avoid.

«Системні технології» 1 (132) 2021 «System technologies»

ISSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

112

Listing 2

private void ConfigureMapping()

 {

 Type currentClassType = Method-

Base.GetCurrentMethod().DeclaringType;

 string classAssemblyName = current-

ClassType.Assembly.GetName().Name;

 Assembly contractAssembly =

this.GetAssemblyByName(this.contractAssemblyNa

me);

 Assembly classAssembly =

this.GetAssemblyByName(classAssemblyName);

 List<Type> classTypeCollection =

classAssembly.GetTypes().Where(t => t.IsClass

&&

t.Name != this.factoryName).ToList();

 List<Type> interfaceCollection =

 contractAssembly.GetTypes().Where(t =>

 t.IsInterface).ToList();

 foreach (Type interfaceType in interfaceCollection)

 {

 string name = interfaceType.Name;

 try

 {

 Type classType =

 classTypeCollection.Find(t => t.Name ==

 name.Substring(1));

 object classInstance =

 Activator.CreateInstance(classType);

 this.collection.Add(interfaceType, classIn-

stance);

 }

 catch (Exception ex)

 {

 Logger.Log.ErrorFormat("Interface {0} is not

valid", name);

 }

 }

 }

 Assembly GetAssemblyByName(string name)

 {

 return AppDomain

 .CurrentDomain

 .GetAssemblies()

«Системні технології» 1 (132) 2021 «System technologies»

ISSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

113

 .SingleOrDefault(assembly => assembly.GetName().Name

== name);

 }

According to the provided strategy, each solution become composed of three

basic types of projects-packages:

� The projects-packages contained only the interfaces representing the con-

tracts of the components to be realized, including abstract factory interface.

� The packages contained the realizations of the interfaces. Each realization

package has its own factory.

� The projects responsible for gluing the system of the units-realizations using

the factories.

An example of the solution is shown in Fig.5. Service package is responsible for

system assembly, Contract packages responsible for interfaces definition.

Figure 5 – An example of the solution according to the strategy provided

As we can see Service package depends on all other packages to glue the system

of components. And in case when the number of variations increases, the depend-

ency of Service package on all the existed packages will cause the problem. To make

the solution more flexible we can use Inversion of Control (IoC) Container that is a

framework used to manage automatic dependency injection throughout the applica-

tion. For .NET platform there are a plenty of IoC Container realizations (Castle Win-

dsor, Spring.NET, Autofac, Unity). Thus, we can use IoC Container for resolution of

factories realizations based on configuration xml-file without recompilation of the

solution. In our opinion, factories resolution is the best and most usable practice of

resolution using IoC allowed to reduce expenses related to the activities to be ap-

plied in case of modifications (adding new types and interfaces etc.).

Conclusions. The suggested solution significantly reduces the resistance of the

system to change making it highly flexible. Each time when we add new interface

«Системні технології» 1 (132) 2021 «System technologies»

ISSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

114

and its realization to the appropriate package(assembly) we do not need to correct

the factory by adding new methods and correcting the logic within its constructor.

REFERENCES

1. R. N. Taylor, N. Medvidovic, E. M. Dashofy. Software Architecture: Foundations,

Theory, and Practice. Wiley, 2009. 750 p.

2. Booch, Grady. Object Oriented Analysis And Design With Applications. Addison-

Wesley, 2007. 691 p.

3. L. Robert Varney. Interface-Oriented Programming. University of California, Los

Angeles Computer Science Department Technical Report TR-040016. March 29, 2004

Revised: September 17, 2004.

4. C.Larman. Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development. Pearson; 3rd edition. 2004. 736 p.

5. Eric Evans. Domain-driven design: tackling complexity in the heart of software.

Addison-Wesley Professional. 2004. 560 p.

6. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software.Addison-Wesley Professional. 1994.

416 p.

7. Martin C. Robert Agile Principles, Patterns, and Practices in C#. / C. Robert Mar-

tin, Micah Martin // Prentice Hall. – 2006. – 768 p.
Received 16.01.2021.
Accepted 20.01.2021.

Варіація шаблону Abstract Factory

В роботі розглядається варіант вдосконалення шаблону Abstract Factory для

практичної розробки сучасних інформаційних систем.

Запропонований варіант відрізняється тим, що замість декількох методів, які

відповідають за створення реалізації певних інтерфейсів в класі Abstract Factory,

вводиться один узагальнений метод. Метод отримує тип інтерфейсу реалізацію якого

треба отримати. Крім того, розглядається варіант автоматичного створення

словника, котрий містить пари «інтерфейс-реалізація» з використанням рефлексії. В

висновках розглядаються обмеження та різноманітні модифікації наведеного

розв’язання.

On the variation of Abstract Factory Pattern

Modern information system can be represented as a set of interconnected components or-

ganized to resolve a computing problem. To resolve the problem, components work cooperatively

interacting each other. Generally, the interconnections between the components can be divided

into two large classes: static which means that the connections between the components are de-

fined before the system starts working and cannot be changed while the system is running; dy-

namic means that the connections between the components are not predefined and can be

«Системні технології» 1 (132) 2021 «System technologies»

ISSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

115

changed without stopping and rebooting the system, as a rule in such systems the interaction

between the components is controlled by the subsystem-mediator.

The work is devoted to revision of Abstract Factory Pattern for its practical use in informa-

tion system development. Provided variation of Abstract Factory Pattern significantly simplifies

the process of information system development making the system more flexible, robust to

change and maintainable.

Литвинов Олександр Анатолійович - кандидат технічних наук, доцент

кафедри електронних обчислювальних машин Дніпропетровського

національного університету ім. О. Гончара.

Литвинов Александр Анатольевич - кандидат технических наук, к-цент

кафедры электронных вычислительных машин Днепропетровске кого

национального университета им. О. Гончара.

Litvinov Alexander Anatolievich — candidate of technical sciences, аssociate Pro-

fessor of Computer Systems Engineering Department of DNU.

