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SYNTHESIS OF OPTIMAL CONSUMPTION FUELS ONE CLASS OF
LINEAR NONSTATIONARY SYSTEMS
(the method of predicted control)

Annotation. For the class of linear nonstationary systems under consideration,
uniqueness is proved and the structure of controls optimal for fuel consump-
tion is established. The problem of finding the optimal switching times is re-
duced to the solution of algebraic equations with an accuracy determined by
the number of terms in the Walsh series expansion. As a result of the applica-
tion of this approach, a program strategy of the optimal control in the sense of
fuel consumption of a linear non-stationary second-order system with a con-
stant and monotonous parameters was synthesized on the base of method
predicted control.
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Introduction

When solving the problem of synthesis of an optimal fuel control in the class
of stationary systems, whose dimension n is not higher than the third order, an ap-
proach based on the combination of the maximum principle of L.S. Pontryagin and
the phase space method [1-3 ]. In connection with the fact that optimal control in
such systems is a relay type, the solution of the problem of synthesis is reduced to
the construction in the phase space of the investigated system of lines (n = 2) or
switching hypersurfaces (n> 2). That divide the phase space into regions, formed by
the optimal trajectories of the motion of the representative point of the system at
the corresponding values of the optimal control.

However, the use of a similar approach in solving the problem of synthesis of
fuel-efficient controls in linear nonstationary systems in connection with the non-
stationary nature of their parameters leads to a system of transcendental equations
that, as a rule, do not have analytical solutions. Below we propose a procedure for
synthesizing software optimal for fuel consumption controls for one class of linear
non-stationary systems using the mathematical apparatus of Walsh functions [4].
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Formulation of the problem
Let the dynamics of a linear non-stationary system is described by an equa-
tion of the form

(1) = A0+ BOu(t),t €[y, T, 1, x(t,) =% (1)

where A(t) = {a;(?)}, B(t) = {b, (t)} - matrices of dimension nxn and nxm respec-

tively, the elements of which are sign-constant

sign[a,; ()] = const, sign[b, (1)] = const , (2)
monotone
sign[da,(t)/ dt] = const,sign[db, () / dt] = const 3)

functions, which have continuous first derivatives and bounded domains of defini-
tion on the control's interval.

We will also assume that the considered system (1) has a structure repre-
senting a consecutive connection of nonstationary links of the first order

[ay (1) ap(t) 0 - . 0
0 ay(® ay@® 0 - e 0 0
A(z‘) _ . . . . . . . . ,B(z‘) _ (4)
(.) Cl,‘i:(t) Cl,-,,'+:1(f) O b”(t)
L 0 e e e e e e a’m(l‘)_
The functional characterizing the fuel consumption has the form
T
[= [lu(t)|dt, )

fy

Tf _t0 > Tmin Tmin
’

where Ty fixed time, - he minimum time required for the transi-

tion of the corresponding system from the initial state X)) o the final one X(T; ).
Control's action is limited

lu() <1 (6)

It is required to define a control's law u (¢)that satisfies the constraint (6)
and takes the system (1) from the given initial state )_C(to) to the origin at fixed time
interval and minimizes the functional (5).

Uniqueness and structure of optimal control

For a linear non-stationary system (1) for fixed )_c(to), ty, T, the value of the

functional (5) is a function only u(r). We show that the functional (5) on a set U,sa

convex downward function, that is, the relation
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16y = 10" + 1=y <21y + (1 - 20)1a”) (7

In this case, taking into account the convexity U, , we have

T;" m rf m
—@3)
L@ )= [ 2w lu @O de= [ p 1 2u (0)+ (1= A (1) | de <
k=1 k=1

; ®)
Tf m Tf m
—() —(2)
<A u @ de+A=2)[ D p [P (@) | dt = AL )+ (A=)
k=1 7y k=1

fy

fy

Thus, the convexity properties of the reachability set and the quality func-

tional (5) allows us to conclude that the control problem posed is convex. It’s known,
that the solution of a convex problem exists. This in turn means that there is a con-

trol satisfying the constraint Z(t)eUt,te[tO,Tf]under the condition 7, -, >7m"

Control's law translates the linear nonstationary system (1) from an arbitrary initial
state to the origin, and minimizing the functional (5).

Taking into account that in [5] the uniqueness of optimal and extremal con-
trols for nondegenerate problems is proved, this allows us to conclude that the relay
control law, defined by expression

u' (1) = —dez{b,(1) p, (1)} )
absolutely minimizes the Hamiltonian.

For normal problems of optimal control in the sense of fuel consumption of
the controls of a linear nonstationary system (1) of the above structure and parame-
ters, the maximum number of control switching does not exceed 2n-1, where n is the
size The state space of the system under investigation [5]. In this case, the most gen-
eral sequence of values of the optimal control can be written in accordance with [6]
as follows:

0..1y..0...—u,...0, u, (n—uemnoe),

(10)

0...—u,...0..14,..0, —u, (n—neuemnoe),
where u, +1. Optimal can also be short sequences, occurring in general sequences of the
form (10).

The solution of the problem

For clarity, we will seek the solution of the problem posed bang-bang con-
trol (9) for the system (1) for n = 2. In addition, it should be noted that the dynamics
of most real control objects can be approximated of the dynamics of second-order
systems.

Let the dynamics of the nonstationary object in the interval [z,,7,]be de-

scribed by differential equations of the form
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x1(0) = ay, (0%, (1) + ay, (%, (),

. (11
x2(2) = b, (H)u(t)
respectively, with initial and boundary conditions
_r _
x (1) =4, %, 1 x(T,) = 10,0} (12)

According to [6], in this case the most complete optimal sequence of controls
has the form

u,,0,—u,, (13)
where u, =+1, and, therefore, in the system (11) it is necessary to determine the
switching times ¢, and 7, .

Suppose that we have found the approximation of the coefficients of equa-
tions (11) in the form of series in terms of the Walsh function system

Rl an —(nT—
all(t)zzar p,()=a i),
r=0
Rl a2) —(2)T —
a,( =Y aPp.O=a @), (14)
r=0

by()= > b0, () =D (1),

where 52 ) =4{@, (). @, (£),..., 9, (1)} ; R-dimensional vector of Walsh functions de-

fined on the interval [z,,7,]; R is the number of terms in the Walsh series expansion;

11 11 11, —a)r 12 12 12y 7T
={dy, ;0@ ey, },0Q ={a, ., ey, t,b ={by,.b, ..y} -R-

Z(”)T
dimensional vectors of constant coefficients of the R-dimensional vector of Walsh
functions for functions a,,(¢),a,(¢),b,(t), respectively.

We note that if the coefficients of equation (11) are known functions, then

the constant coefficients of the expansions (14) are determined by the formula

a, =jf(x)(pj(x)dx(j =0,1,...)
0 (15)

_to

. . . t . ..
taking into account the time scale x = ,x €[0,1]. If the mathematical description

r

of the object is known up to parameters, then the corresponding approximations can
be obtained using the parametric identification method for linear dynamical systems
proposed by the authors in [7].

We integrate the system (11) from the given initial state )_c(to)to the zero fi-

nal state)_c(Tf) =0. Moreover, on each of the intervals of constancy of control (13),
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the initial conditions of the subsequent interval are determined from the condition
of conjugation of the trajectory of motion. When integrating, we use the operation
matrix of integration P!g«) [8], which, taking into account the control interval un-

der consideration, can be defined in the form P, = (T, —#,) Pz, -

If consider the interval [fosfil# =

and P1(RxR) for 2(®) we get

“o and from (11) taking account of (14)

() = x0 Uy B @y (t)

—T -T

ﬁ =b ‘P(RxR)

Taking into account (14) and (16) we have

(16)

where

(0= 1] @ 9 ()03 +u, B 0 (0)x
x exp(—ja(”)TE)R(z)dz)dz 4 Cl}exp(jZ““TgZ(r)dz)
z (17)

We introduce the notation

—anr  —anT _,
a =a P>

—r—

d @)= xza(l2 T;R(t)"‘uo?T;’R(t)a (18)

where / - R-dimensional vector of constant coefficients, each element of which, by
virtue of the multiplicative property of a system of Walsh functions, is defined as

1 = Za“” o (r=0,R-1)
(19)
Taking into account the introduced notation (18) and the operational matrix
of integration, we write (17) in the form

() ={[d" ppyexp-a"" g O+ C rexpa’ 9, (1))
2 (20)
As
4" () =exp(-a"" 9, (1),
4" g, =exp(a" " g, (1),

then the 1ntegrand in (20) can be written as

"o 0=d" 0, d"" ¢, 0)

where a. R-dimensional vector of constant coefficients, defined similarly to ex-
pression (19).
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Finally, we obtain expression (20) in the form
—(6)T— —3)r—
x()=d @)+ Cid ~ @p(t) (21)
—(6)
where ¢ - R-dimensional vector of constant coefficients, defined as

R-1 -
d® =>d®d%), (r=0,R-1)

i
’

—()
d - R-dimensional vector of constant coefficients, defined as

&7 —@HT

d =d f)('RxR)
Taking into account the initial conditions (12), from (21) we define the con-

stant integration
— 3 —

—er—

o :(xlo_d Pr(t))/d ¢)R(t).

Similarly, we integrate (11) in the interval 71,021 when #” =0and find
——

X, (1) = x5 +uy f @p(t) = H,

50 =@ ) +uo B (1)) %

’ —(nr— r —(nr—
xexp(~[a " pp(t)d)dt+Coyexp([a " @, (t)d)
t 4 (22)

Arguing as in the previous case, we write, taking into account (22), % ®in
form

— )T — —3)r—
x,()=Hd @)+ C,d @) (23)

—©)
where 4 - R-dimensional vector defined as
R-1
d” =%d®dS), (r=0,R-1)

1n=0
’

—@®)
d - R-dimensional vector defined as

®T =T

d = d P(’RXR) ,

-
d - R-dimensional vector defined as

R-1 PR
N _ (12) 7(2) —
d’~’ = E a,"d s, (r=0,R-1)
A

We define the integration constant in equation (23) with allowance for (21)

as follows:
—(6)Y — —3)T— —(9)T — —3)T—

Cy=(d @)+ Cid @ (t)-Hd ~@(t,))/d ~ @(t)
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Integrating (11) on the last interval for, we obtain

f—1— —T7—
%50 =Cy —uy [b ()t = Cy—uy B, (0)
- (24)
whence taking into account (22) has the form

o
C,=H+u,p ¢p(t,)

For %1 (1) , taking into account (24), we obtain expression
t—anr— —r— —(nr—
X0 ={a " )Ci—u B prexpla 9, (1))

—anr— — T — —2)r— —)T—
+C,iexpla  @r(1)=Cyd ~ @p(t)—u,d Pr()+Cd  @p(0)

—(12)
where ¢ - R-dimensional vector of constant coefficients, defined as

(25)

=12 & a3
d." =%d"dS), (r=0,R-1)
rn=0
_(11) 3 3 . . .
d - R-dimensional vector of constant coefficients, defined as

—anr  —qor

d =d P];XR

—(10)
d - R-dimensional vector of constant coefficients, defined as

—qoy R

ro=.d"B. (r=0,R-1)

n=0

The integration constant from (25) with allowance for (23) is defined in the
form

—(9)T — —(3)Tr—
C4:(Hd ¢R(t2)+czd (pR(tz)_

—O)T— —12)r— —3)r—
—C3d ¢R(12)+u0d ¢(I2))/d (DR(l‘z)'

Since in the optimization problem under consideration the target region is

xz(Tf)le(Tf)Sg

the origin, then putting , where ¢ is the specified accuracy of

reaching the final state, from (24) and (25) we obtain the following inequality for the

determination of “iand ’2:

H4H1+H2+H3f(t1,t2)£g’ (26)

where
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— (9T —

H, =d ¢R(-Tf);

—@12)T—

H, =-u,d  ¢y(I,);

—@3)r—

H,=d (pR(Tf);

H,=u,p ¢R(Tf):H+”0ﬂ pr(t,)=C,

are constant and computed in advance; f(t,t.) _ 3 function of switching times %,

t

2 equal to:
— (9T — —a)r— —3)r—
f@,.t,)=[(H-H,)d ¢@y,)+u,d PRty +Hlld  @i(t,)+
—(6)T — — T — —3)r— — 3T —
+ld  @p(t)-Hd  @,(t)]/d  @p(t)d  @it,) (27)
H, = (=2 900017 9400 =
Here s =0 - ?r (1)) @r(ty) =const 414 is also calculated in ad-
vance.

Optimal predicted control algorithm
Optimal switching times are determined of the following optimal predicted
control algorithm:

Step 1. Depending on the initial state, the sign of 0 is selected;

Step 2. If the starting point * ) s in T or in III quadrant, the time of its

transfer to the axis " for the system (11) is determined by equation
&= xz(to)"'“oET(;R(f) )

R=2"4d

Step 3. By the number of functions in the Walsh system - an inte-

d = 1’2"“, the lower bound of the number of intervals of the partition of a given

| 10T 1= LI> R

ger

interva is determined, from which the duration of the partition step

AL =T _t‘))/lis found for the subsequent search of the required switching mo-

ments;

Step 4. Set the value; /1 =1 +kALk =1

i+ A with discreteness Af, ine-

Step 5. By checking the values ‘2 of from
quality (26) is checked. If inequality (26) is satisfied at some point, then the desired

values of /1 and !> are found. Otherwise, the following value k=k+lt, =t +kAt i

selected, and the algorithm continues.

It should be noted that this algorithm takes into account the existence of
non-optimal areas for which it will not have a solution, i.e. for any initial conditions
it has a finite, computationally calculated procedure.
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Conclusion
For ordinary optimization problems for linear non-stationary systems, the
structure of which is a serial connection of typical dynamic systems of the second
order with monotone and constant signs, the upper limit of the number of switching
and their sequence is defined, which allows us to synthesize algorithms of optimal
predicted control.
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