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CRITERIA AND TECHNIQUES FOR PROCESSING NOISY DATA
WITH ANOMALOUS VALUES

Abstract. An approach to solve the problem of processing noisy data with
anomalous values when the statistics of noise and anomalies are unknown is
proposed. This approach is based on a method of generalized maximum likeli-
hood and a superset of cost functions. The superset allows to tune the data
processing onto the current noise environment. This tuning is performed by
setting the values of three free parameters related to the scale, the heaviness
of tails, and the form of random values distribution, as well as to the presence
of anomalous values. In the general case, the proposed approach requires to
solve a multimodal optimization problem.
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Introduction. Processing of noisy data with anomalous values is one of the
important and complex problems [1]. In order to solve this problem, the known cri-
teria and methods for processing noisy data with anomalous values are analyzed un-
der assumption that data model is a constant. Firstly, we analyze the criteria and
methods for processing of data distorted by the additive noise with Gaussian and
Laplacian distributions, Cauchy distribution, as well as by the generalized Gaussian
distribution and by the generalized Cauchy distribution. The general basis of this
analysis is the Fischer's criterion of maximum likelihood. Further, the criteria and
methods for detecting anomalous values as well as the robust methods for process-
ing of data with contaminated noise are analyzed. It is noted that generalization of
the maximum likelihood criterion, performed by P. Huber [2] and complemented by
the framework of cost functions with horizontal asymptotes [3], provides a funda-
mental possibility for solving the considered problem. At the end of this paper, we
propose an approach to constructing the generalized maximum likelihood criterion
on the base of "superset” of cost functions [4]. This approach improves the general-
ized maximum likelihood criterion due to the possibility to tune the data processing
onto unknown noise environment.
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Problem formulation. The problem is to develop the approach for process-
ing noisy data with anomalous values, which generalizes the traditional approaches
to data processing in a well-known noise environment and allows to tune the data
processing onto unknown noise environment.

Criteria and methods for processing noisy data. For processing of data
distorted by additive Gaussian noise, the least squares criterion is traditionally

used [2]. In the case when data is represented by a real sequence x,..., x,, of length

N 21, and the unknown value is the constant value 0, the use of this criterion leads
to the problem

N
* ; —0)?
0* = argmem[izzl: (x, —0)°]. 1)
From (1) it follows that

9*—i§:x 2)

i.e., the estimate of 0 is the arithmetic mean value. If each quadratic term in (1) is
weighted by w,, then instead of (1) we get the problem:

N
* — ; (x. —0)1.
6% =arg mem[; w; (x; =0)"] 3)
The solution of (3) is the weighted arithmetic mean value:
N N
0 => wx, /D w . 4)
i=1 i=1

The solutions (2) and (4) have a clear probabilistic justification within the
framework of maximum likelihood criterion. Indeed, let the data elements (or sam-
ples) x,,..., x,; represent the noisy values of a constant value 6, i.e.

x,=0+n,; i=L..,N, ©)
where n,,...,n, are the independent random variables. If each of n;, obeying the

Gaussian distribution with zero mean and uniform variance o, then the joint prob-
ability density function p(x,,...,x, | 0) is given by

i=1

_ . N S B oY €
PO 10)= PO 10)-cn Py 10) = s exp( > j.@

Applying the maximum likelihood criterion
0% = argmglxp(xl,...,xN |0) = argmglxln[p(xl,...,xN |9)] (7
to (6), we have the problem (1), the solution of which is given by (2). But if each of #,

has different variance o, then
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~ 1 . 1 _ _ S M
p(xl,-»-,lee)—(m)N (G, Gy eXP( ; 20; ) N

After applying (7) to (8), instead of (1) we get the problem (3), the solution of
which is given by (4), where w, =1/ Gf .

For the processing of data distorted by additive Laplacian noise, the method
of median filtering is used. It is based on the criterion of the minimum sum of abso-
lute values, which leads to the problem [5]:

N
k 1 —
0* = arg mem[glll x;, =01l . 9)

The solution of the problem (9) corresponds to the median med{x, |,.A; .+ of

data sequence, which for odd value of N is equal to the value of the middle element
of ordered sequence. However, if N is even, then the median is equal to the arith-
metic mean of the two middle elements in ordered data sequence. If each absolute
term in (9) is weighted by w,, then we have the problem:

N
L - 1 _
0 —argmem[;Wi |x, —0]] . (10)

The solution of (10) is given by:

N
0% = med{w, o x; |} ,

(11)
where © is the replication operator which replicates the data element * by the

number of times " [6)].
The criterion of maximum likelihood provides such a justification for the

problems (9) and (10). Let the independent random variables "i obeying the Lapla-

) e ) ) ) 2 _ 92
cian distribution with zero mean and uniform variance ©~ =2A", Then

! -ex (—lﬁ]x—(ﬂ) (12)
Y TR s TR

i=l1

p(xl"“’xN | e) =

Applying (7) to (12), we have the problem (9), the solution of which is the

median. But if each of », has different variance o, = 21’, then

(X[ Xy | 0) = ! -eX —iﬂ (13)
Pt N Gy P r )

i=1 i
Assuming w, =1/, and applying (7) to (13), we obtain the problem (10), the
solution of which is given by (11).
The Gaussian and Laplacian distributions are special cases of the generalized
Gaussian distributions family [7]:
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ST B 1 N IR S TR
PO = o) eXp[( s ” 25T (1 +1/p) eXp{( s )]’(14)

o0
where I'(x) = jt“e"dt is a gamma function, 0 is a location parameter, s >0 is a
0

scale parameter, p > 0 is a shape parameter, which determines, in particular, the tail
decay rate. The mean, the median and the mode of generalized Gaussian distribution
is equal to 0, and the variance is ¢ = s*[I'(3/p)/T'(1/p)]. From (14) it follows that
the values of p=1 and p=2 correspond to the Laplacian and Gaussian distribu-
tions, respectively, and the boundary value of p — o corresponds to the uniform
distribution for the interval (0 —s5,0+s).

Applying (7) to the joint probability density function of independent noisy
samples (5), each of which obeying the law (14) with the same scale s, leads to the
problem:

N N

0* = argmgtx{—;q x,—0]/5)P = NIn[2sT'(1+1/p)]} = argmein[iz_l] x, —0[°1,(15)

where 0 <p <. If p— o, then from (15) we have the problem:

* — i —0]. 1
6% = argmin max | x; - 6] (16)

The problem (16) has an obvious analytical solution [9]
0 [g;%(xl )+ E_lig])v((xl N/ 2=[xq +x3,1/2, a7

where the lower indices in parentheses indicate the ordered sequence elements.
Equation (17) gives an analytical solution of the problem of location parameter esti-
mation for the noise with a uniform distribution.

Applying (7) to the joint probability density function of independent noisy
samples (5), each of which obeying the law (14) with different scale s,, leads to the

problem:
) N
9"‘=argm61n{;1 w, |x,—0|"} (18)
where w, =(1/s,)". In the general case, the problem (18) has no analytical solution.
However, one can note the following. If 0<p <1, then the solution of the prob-
lem (18) must occur at one of the samples x;. Hence, it can be obtained by a search

among them. For this case, the objective function of the problem (18) is no convex
neither unimodal, and its derivative has infinite derivative discontinuity at the
points x;. This property makes it possible to apply just zero-order optimization
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methods based on using values of the objective function. If p =1, then the solution
of the problem (18) is the weighted median (11). Although in this case the objective
function of the problem (18) is convex, but it has finite derivative discontinuity at
the points x,. Such a behavior of the objective function also makes it possible to ap-
ply just zero-order optimization methods. If 1 < p <o, then the objective function of
the problem (18) becomes strictly convex, and the solution of the problem (18) is
achieved at a single point. First and second order optimization methods based on the
use of the first (for 1 < p <) and the second (for 2 < p < ) derivatives of the objec-
tive function can be used to search this point.

Let the independent n, obeying the Cauchy distribution:

s 1 1 1
)=, . , 19
P T s'+|x=0] 7w (I+|x—0]/s%) (19

where 0 is the location parameter, and s > 0 is the scale parameter. Then the joint

probability density function is

s X 1
X Xy |O)=|—| | | 57— 20
p( 1 Nl ) (TC) g52+|xi—6|2 ( )
Applying (7) to (20), we have the following equivalent problems:
N N
* — 2 L 251 — 2 o 25\-1 —
0 argmglxl;l(s +]x,—01%) argmgxln[ll;[(s +]x,—-01)7] o

N N
: 2 2 : 2
=argmelan=1:1n(s +|x,—0| )=argrnelan=1:ln(l+|xl.—9|2 /s%)

The penultimate record in (21) is used as a mathematical statement of the
"myriad" filtering problem, the solution of which received the designation
myriad{x,|",;s} and the name "myriad" [10].

In the case of different values of scale s;, we obtain:

N N
2 251 . 2 2
6*:argmglxll:1[(si +|x,=-0[) :argmgnizz;‘ln(si +]x;,—-0]7). (22)

Assuming &, = (y/s,)’, where 7 is a free parameter, from (22) we obtain [10]
N

0* = argmeinZln(yz +h | x, —0*) = myriad{h, o x, |57}, (23)
i=1

where © denotes the weighting operation. Note that the myriad does not have to co-
incide with any x,, but its value does not go beyond the range of these values. Limit-

ing cases of the myriad are the arithmetic mean (when y — o) and the mode (when
v — 0)[10].
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Let the independent n; obeying the distribution [6]:

S 1

X)=——"—79— 24

P 2 (s+|x—=0])° @%)
where 0 is the location parameter, and s > 0 is the scale parameter. Then
s)' 1

Xin Xy |O)=|—| || ——————— . 25
p(x, L) (th 1;1[(S+|xi—9|)2 (25)
Applying (7) to (25), we have the following equivalent problems:

N N
* — . — -2 = 1 . — .

0 argmgxl;[(s+ |x,—0])~ =arg memlz:l:ln(s+ |x,—0)) (26)

The solution of (26) is called the "meridian" and denoted as
meridian{x, |Y,;s}.
In the case of different values of scale s;, we obtain
N N
-2 .
9*=argmgtx1;[(si+|xi—9|) =argme1nizz;‘ln(si+|xi -0)). (27)

Assuming h, =v/s,;, where v is the free parameter, from (27) we obtain [6]
N

0* = argmeinZIn(y +h, | x, —0|) = meridian{h, o x, |X,;v}, (28)
i=1

where ° denotes the weighting operation. Note that the meridian coincides with the
some x;. Limiting cases of the meridian are the median (when y — o) and the mode

(when y — 0) [6].
The Cauchy distribution (19) and the "meridian" distribution (24) are special
cases of the generalized Cauchy distribution [6]:

2/p
oy PEQ/P)S I _ pr2/p) {H(H_eqp} .

ATA/p)] [s"+|x—0] 1"  2s[T(1/p)] s
where ['(x) is a gamma function, 0 is a location parameter, s > 0 is a scale parame-
ter, p>0 is a shape parameter, which is also called a tail constant [8]. From (29) it
follows that in the case of 0 < p <2 the mean and the variance are not exist because
the corresponding integrals are divergent.

Applying (7) to the joint probability density function of independent noisy
samples (5), each of which obeying the law (29) with the different scale s,, leads to

the problem:

N
* 1 P —fQIP
0 —argmemlzzl:ln(y +w, |x,—01"), (30)
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where w;, =(y/s,)” and 0<p <. The problem (30) generalizes the problems given
by (23) and (28). Moreover, if y — o, then from the problem (30) we obtain the
problem (18) formulated for the generalized Gaussian distribution (because
In(1+ x) = x for x <<1). Thus, the method for solving the problem (30) is more gen-
eral than the solving method of the problem (18). In addition, if 0 <p <1 then the
solution of the problem (30) is achieved in one of the points x,. Therefore, it can be

obtained by checking these points. In this case, the objective function of the
problem (30) is not unimodal, and its derivative has a discontinuity at these points.
This makes it possible to apply just zero-order optimization methods. However,
if 1 <p <2 then the objective function of the problem (30) is also not unimodal, and
the solution is obtained in one of the local minima, the number of which is limited
by the total number of points. At the same time, solving the problem of finding a
global minimum is a rather complicated problem [6].

Criteria and methods for detecting anomalous values. The anomalous
values are the values that are outside the acceptable range, i.e. they are the outliers.
The traditional approach to the problem of removing outliers is to use the method of
median filtering. For successful median filtering it is necessary that the amount of
outliers within the aperture of median filter was less than half of the total number of
samples in aperture. Otherwise, the quality of median filtering can be bad.

An important class of methods to remove outliers is the class of robust non-
parametric methods based on trimming and winsorizing procedures. Trimming
means throwing out the "bad" values, while winsorizing means replacing them with
the certain "good" ones. In particular, such a method is the method of constructing
an o -trimmed mean value:

1 =

m(o) =mi:§f(w (31)
where a is chosen such that ¢ =| Na |, where |...| means the integer part of the
number, and x;, denotes the element of ordered sequence of x;. From (31) it follows

if o =1/4 then m(1/4) is the mean value of samples in the interquartile interval.

Winzorizing consists in replacing with x,,, the g number of the first elements of
ordered sequence, in replacing with x,_,, the g number of the last elements of or-

dered sequence, where 1< ¢ < N/2, and then in calculating the mean [12].

Classical criteria of anomalous values detection when a large number of
samples have the Gaussian statistics are considered in [13]. In particularly, the sta-
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tistical methods of outlier's detection, which are based on the generalization of the
Grabbs criterion [11], are considered in [14]. These methods can be used when the
number of outliers is small, and there are the appropriate tables of percentage points
of statistics for the given data samples size. In particular, the Grabbs criterion for de-
tecting the one outlier, which can be the maximum value Xnys 18 based on

statistics [14],
Gy =(xy, =)/ S, (32)

i=1

Y N _
where x=)x; and S = \/ﬁg(xi —x)* . The value xy, is considered to be the

outlier if the value of G, exceeds the critical value G, ,_,, where a is the signifi-
cance level [15]. Similarly to (32), the Grabbs criterion is also used to test the small-
est sample value x,. In this case, the statistics G, = ()_c—x(l))/ S are compared with
the critical value G, , . If G, > G, _,, then the decision that the x,, is the outlier is

made. It is noted in [14] that the Grabbs criterion can actually be used to detect the
"abnormal” data elements, that is, "to detect the abnormal element only in the case
of a normal law". If the distribution law differs from normal (Gaussian) law, then the
use of corresponding tables can lead both to the omission of outlier as well as to the
erroneous assignment of a good data element to the class of outliers. The applicabil-
ity of the Grabbs type criteria faces at least with the two following problems. Firstly,
the data may have more number of outliers than number of outliers was given a pri-
ori. This leads to the errors in the estimates of the mean and the variance, since
these estimates are not robust. Therefore, to use the Grabbs criterion it is necessary
to check the data for a different number of outliers consistently. Secondly, the num-
ber of possible "true" data distribution is too great. Therefore, the identification of
"true" distribution, even within the framework of parametric approach (when it is
necessary to determine the values of few parameters) also faces with the stability
problem, since outliers can lead to the significant errors in estimating the parame-
ters of "true" distribution.

Criteria and methods for processing of data with contaminated noise. If
noise distribution is "contaminated" by another distribution, the robust methods are
used for data processing [16]. The model of contaminated noise is usually described
by ratio [9]:

P (x)=(1-g)g(x)+eh(x), (33)
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where g(x) is a known probability density function, /(x) is an unknown probability
density function, and the parameter ¢ specifies the value of contamination in the
range from O to 1 [16]. The well-known model of (33) is the Tukey model, in which
2(x)=N(x;pn,6°) and A(x) = N(x;p1,95°), where N(...) denotes the density of nor-
mal distribution. Considering this model, Huber noted [2] that editing data with ab-
normal values by cutting the values that are allocated in the general picture, and the
subsequent application of classical criteria and evaluation procedures is inferior to
the application of robust methods.

The most common method for constructing robust estimation is the estima-
tion method of "maximum-likelihood type" or, in short, the M-estimation
method [2]. In literature, this method name is associated with the criterion of "gen-
eralized maximum likelihood" [16], although sometimes the method of M-estimation
is also called a generalized method of maximum likelihood [9]. Using this method,
the problem of estimating the location parameter value is formulated as a minimiza-
tion problem:

N
k 1 _
6% = arg mem;w(xi 0), (34)

where y(x) is a cost function which may not have probabilistic interpretation [16].
Although the function y(x) is sometimes called a loss function or a weight func-

tion [3], hereinafter it will be referred to as the cost function. Note that the designa-
tion y(x) is taken from [3], and it corresponds to the designation p(x) that is given
in [17]. According to (34), this function forms the objective function of the minimi-
zation problem. List of some known cost functions with normalization coefficients
that improve the graphic comparison of these functions is given in Table 1.

A visual comparison of the plots of cost functions given in Table 1 indicates
that Tukey's, Hampel's, Andrew's and Meshalkin's cost functions are very similar. In
particular, they have quadratic behavior in the neighborhood of zero and quickly go
to horizontal asymptotes, thus implementing a strong filter against contamination
[3]. In addition, the Geman-McClure-Demidenko function is close to these cost func-
tions, while the cost functions of Huber, Cauchy-Gonzalez-Arce and Aysal-Barner
differ significantly from them since they do not have the horizontal asymptotes.
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Table 1
Cost functions and normalization coefficients
function name y(x) k
Huber [18] N Ix|<e 1/¢2
2c|x|-c*; |xp>c
Tukey [2] . 1-[1-(x/¢)T; |x|<c 1
L; |x|>c
Hampel [16] X 0<x<a | VVlab+c—a)]
2a|x|-a’; a<|x|£b
k- R
—M+a(b+c—a); b<x|<c
C_
a(b+c—a); |x|>c
Andrews [19] L fe=cos(x/e)); | x|< e 1/(2¢)
2c; | x|> e
Meshalkin [20 2 -1/2\-1
120] k{l—exp(—}g n, A>0 (I-e )
A=10
Geman-McClure- x> I+c,
i k-——, ¢>0
Demidenko [3] X +c c=0.16
Cauchy-Gonzalez- k-In(1+x*/c?) 1/In(1+1/¢2),
Arce [21] =016
Aysal-Barner [6] k-In(1+|x|/c), ¢>0 1/In(1+1/¢c),
c=04

From (34) it follows that the estimate of the location parameter can be ob-
tained by solving the equation

N
> y'(x; -0)=0, (35)
Py

where y'(x) is a derivative of cost function y(x). Since (35) follows from (34), the
problem (35) may be more complicated than the problem (34). Indeed, if the cost
function is not convex, then the corresponding object function will have several
minima and maxima. Hence, the roots of equation (35) will be both the points of the
minima and the points of the maxima.

Superset of cost functions and generalized criterion. An aggregation of
several cost functions into a general "superset" [4] with the corresponding technique
of their transformations [22] allows eliminating redundancy of known cost functions
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and provide a wide range of possible solutions including mean, median, mode, myr-
iad and meridian as limiting cases. Advantage of such a superset is due to ability to
tune a processing method onto unknown noise environment.
The superset of cost functions is defined by the function [4]:
Wi () = kg OI [ x o )P 1], (36)
where a is a smoothing parameter; ¢ is a smoothing degree parameter (0 < g <);

B is a parameter of the form of cost function (—co<pf<1), where B<g;
kP9 (x)=1/[(1+ ] x, /a|7)?? —1] is a constant, which is necessary to perform the

transformations of cost functions one to another within the superset framework; x,

is a normalization point, in which the equality: \pg“’ﬁ"”(xo):l is ensured

(usually x, =1). The parameters o, B and g have the sense of free parameters
needed to change the behavior of cost function (36).

The optimal settings for these free parameters are the following. For Gaus-
sian noise we have a—>®o, B=const and ¢g=2. For Laplacian noise we
have o —>o, B=const and ¢g=1. For Cauchy noise with scale s we
have a=s, B—>0 and ¢g=2. For "Meridian" noise with scale s we
have a=s, B —0 and g =1. For generalized Cauchy noise with scale s and tail
constant 0 <p<2 we have aa=s, B —> 0 and g =p. In the absence of noise, but in
presence of anomalous values we have several options, in particularly,
a=0,0<B<1and g =const aswellas =0, 3 —>0 and g —> 0.

Thus, the superset of cost functions allows to form various criteria for data
processing by changing the values of its free parameters. Therefore, we can formu-
late the following generalized criterion for data processing:

min >0 (x5 0

i=1 , (37)
where 0 is a vector of unknown parameters, and where the free parameters o, B,
and ¢ should be tuned onto the current noise environment. Note, if the noise envi-
ronment is known then the free parameters should be equal to the corresponding
optimal values.

In practice, the tuning of free parameters onto the current noise environ-
ment can be performed on a certain grid of their values by minimizing the error re-
ceived for a priori known solution, which may be a constant. Therefore, in the case of
unknown noise environment, instead of obtaining the statistics necessary to deter-
mine the data distribution and then choosing the cost function corresponding to this
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noise environment, one can tune the values of free parameters and use the proposed
method. Taking into account that in the general case the obtained object function is
not convex and is not unimodal, the implementation of the proposed approach may
be laborious.

Conclusions. To solve the problem of processing noisy data with anomalous
values when the statistics of noise and/or anomalies are unknown, it is expedient to
use the proposed approach based on the method of generalized maximum likelihood
with the superset of cost functions. The superset of cost functions allows forming
various data processing criteria by changing the values of free parameters. It pro-
vides the ability to tune the data processing onto the current noise environment.
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