1 (114) 2018 «CucreMHbIe TEXHOJIOTHH »

UDC 004.4
1.V. Ponomarev
DEVELOPMENT OF WEB-SITES WITH USE
ASP.NET TECHNOLOGIES AND ANGULARJS PLATFORMS

Annotation. There are many models and technologies for creating websites.
Classic models are constantly supplemented by new developments. The choice
of one or another implementation depends on many factors arising from the
goals and objectives defined at the planning stage. Features of the ASP.NET
WEB API 2.0 and AngularJS platforms are described.

Keywords: site, Web application, client-server architecture, model, controller,
view, pattern, framework, technology, .NET WEB API 2, AngularJdS, MVC, HTML.

Introduction. The Web application consists of two parts - the cli-
ent part that represents a user-friendly interface (UI, user interface),
and the server part that provides access to the database through the API
(application programming interface). To create Web applications on the
server side, a variety of technologies and programming languages are
used: ASP, ASP.NET, Java, Perl, PHP, Python, Ruby, Node.js,
ASP.NET vNext, Coldfusion. On the client side, they are used to imple-
ment the GUI: HTML, XHTML, CSS, and for creating and processing
queries, creating an interactive and browser-independent interface:
ActiveX, Adobe Flash, Adobe Flex, Java, JavaScript, Silverlight.

Formulation of the problem. A Web application is created both
on the server side and on the client side. It is necessary to consider the
specifics of the development of sites based on ASP.NET WEB API 2.0
[1] and AngulardS [2].

Main part. Server architecture. The server part is the access
point to the database. The ASP.NET Web API is the foundation that
makes it easy to create HTTP services that are used to communicate
with clients, including browsers and mobile devices. ASP.NET Web API
is the ideal platform for building RESTful applications on the .NET
Framework.

The method of interaction is simple - in the application there is a
controller Controller. Each controller is responsible for its essence from

© Ponomarev 1.V., 2018

104 ISSN 1562-9945

1 (114) 2018 «CucremMHble TeXHOJIOTUN »
the database and working with it. For example, ClientController will be

responsible for working with the client entity (creating a new one, sav-
ing changes to the existing one).

The model includes the logic for storing and retrieving data from
the repository, but even within the model, you must maintain a certain
level of separation between the data model entities and the storage and
retrieval logic, which is achieved using the storage template.

The program operates with a number of entities and models, for
managing which, a number of repository classes Repository are created.
The repository allows you to abstract from specific connections to the
data sources with which the program works, and is an intermediate link
between classes directly interacting with the data and the rest of the
program.

The UnitofWork pattern creates its own work area for each re-
quest, which avoids the problem of concurrent access to the same data.
Thus, work with various repositories is simplified and it is guaranteed
that all repositories use the same data context. The controller interacts
with the database through a service that uses extensions of entities, up-
dates them and passes them to UnitOfWork. UnitOfWork through Re-
pository and object-oriented technology for working with data Entity-
Framework Context works with the database (Fig. 1).

i

o
Regsitary
f,,/”
v
Conlreller o Senice Unit of veark
L
| AN
\ N
\‘ ™
EntityFramemork Context Dataase

Extensions

Figure 1 - Server architecture

Architecture of the client part. The client part is the layer be-
tween the user and the database. Let's consider the possibility of its
construction on the AngulardS framework.

AngulardS is a popular JavaScript framework with the MVC archi-
tecture, which is widely used to create and support complex web applica-
tions.

ISSN 1562-9945 105

1 (114) 2018 «CucreMHbIe TEXHOJIOTHH »

Each page has its own controller, where minimal business logic oc-
curs - all manipulations occur through the server, the view is an HTML
page, and the model is the actual data that the user will manipulate.

Angular splits the application into blocks of several types: control-
lers, directives, factories, filters, services and views. Types deal with the
user interface, controllers - interface logic, services communicate with the
backend, directives allow you to create components and extend HTML.
Blocks, in turn, are divided into modules.

To create a controller, use the controller (name, constructor),

which is defined in the Module object. The first parameter passes
the name of the controller, and the second one - the function that per-
forms the controller tuning.

To apply the controller to a specific HTML markup area, you must
use the ng-controller directive. After that, this part of the HTML markup
will denote the controller’'s view.

The $scope object serves as a link between the representation in the
form of an HTML code and a controller. The $scope object acts as the pro-
gram model. $scope defines any objects that you can use in the view and
to which you can set data binding. Formally, $scope represents a regular
javascript object.

In the controller function, the $scope service is passed as a parame-
ter, through which the controller transfers data to the view (Fig. 2).

Each AngulardS program has one $rootScope object, which is the
parent of all other $scope objects used in the controllers. And when you
run the program, you create an anchor for the element that uses the ng-
app directive to the $rootScope object.

Controller

v

Scope

View

Figure 2 - Interaction of parts of AngulardS
AngularJS services represent special objects or functions that

perform some common tasks for the entire application. In AngulardsS,
there are a number of built-in services, such as $http, $q, $timeout and

106 ISSN 1562-9945

1 (114) 2018 «CucremMHble TeXHOJIOTUN »
a number of others. In addition, it is possible to create your own ser-

vices to perform specific tasks.

Client-server interaction is implemented using the service $http

to work with http-requests:
$http.get(/ServerRequest/GetData’, config)
.success(function(data,status,headers,config) {
$scope.Details = data; })
.error(function (data, status, header, config) {
$scope.ResponseDetails = "Data: " + data +
"<hr />status: " + status +
"<hr />headers: " + header +
"<hr />config: " + config; });

A GET request is made to the desired address for information.
The returned object is associated with two specific success and error
methods. The success method is passed a function that will work as a re-
sult of successful execution of the request, and data is transferred from
the server to use them. The error method will only work when the re-
quest is not executed and an error is returned. The error data will also
be passed to the function.

Conclusions. The architecture of the server and the client part is
considered, the principle of interaction between these two parts of the
application is described. A web application for accounting of goods
turnover, customers and orders was developed using the ASP.NET WEB
API 2.0 and AngulardS platforms. To create a product page, templates
of HTML-page with AngulardS directives were applied, which simplify
the programming of simple interfaces. Using the AngularJS framework
to develop the client part of the site allows you to create web applica-
tions of any complexity very quickly, since AngularJS contains all the
necessary services for application development.

LITERATURE
1. Adam Freeman. Expert ASP.NET Web API 2 for MVC Developers -
Apress, 2014 - 688 p.
2. Ari Lerner. ng-book - The Complete Book on AngulardS - Fullstack, 2013
- 624 p.

ISSN 1562-9945 107

