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SELECTING THE OPTIMAL MODEL OF MULTIPLE LINEAR
REGRESSION IN THE CASE WHEN INDEPENDENT
VARIABLES ARE OBSERVED WITH ERRORS

Annotation. The situation is considered when the input variables of the regres-
sion model contain errors. For such a case, the stability of the various criteria
commonly used to select the regression model optimal from the point of view
of the set of input variables is carried out. The study was carried out by simu-
lation using a software specially developed in the MATLAB environment.

It is shown that the most stable to the presence of errors in input variables is
an algorithm based on the method of sequential elimination.
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Introduction. In the classical linear regression model, it is as-
sumed that the input variables are observed without errors. It is clear,
that in most cases this assumption is not fulfilled exactly, since the val-
ues of the input variables contain, at least, measurement errors. There-
fore, it is of considerable interest to study the influence of errors in in-
dependent variables on various regression analysis procedures. From the
practical point of view, such analysis is important, first of all, when us-
ing samples of limited volume. An effective means of research in this
situation is simulation modeling.

Analysis of publications on the research topic. Effects associated
with the presence of errors in the input variables of the regression
model have been repeatedly studied. It is shown that the estimates of
the coefficients of the multiple linear regression model obtained by the
least squares method (MLS) become biased and unconsistent. (see, for
example, [1,2,3]). You can obtain unbiased estimates if you have addi-
tional information about the errors inherent in the input variables, for
example, if their variances are known [1]. In the work [4] the value of
the root-mean-square error (RMS) of the MLS estimations (MLSEs) was
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investigated by simulation in the presence of errors in the input vari-
ables with a limited sample size. It has been demonstrated that MLSEs
have smaller RMSs compared to unbiased estimates obtained by the
maximum likelihood method (MLM) at small sample sizes (up to 50),
since they have significantly less selective variability.

One of the important practical problems of regression analysis is
the selection of those input variables that significantly affect the output
variable (system response). Such selection makes it possible to reduce
the time and material costs of conducting experiments using the multi-
ple regression model. Screening of input variables that do not signifi-
cantly affect the response of the system, in this paper, we will call the
optimal search for a set of input effects of the multiple linear regression
model.

Earlier, we considered the problem of choosing the optimal mul-
tiple input regression in a set of input parameters in the case when the
hypotheses of the classical Gauss-Markov model are satisfied. [3,5] The
study was carried out using simulation. Five different algorithms for
solving the problem of choosing the optimal regression model were ana-
lyzed. [5,6] Then, in work [7] the stability of these five algorithms was
studied in the case when multicollinearity is present between some of
the input variables.

Formulation of the problem. In this paper, we study the effective-
ness of the same algorithms for choosing the optimal model of multiple lin-
ear regression, when the input variables are observed with errors.

Main part. Consider the multiple linear regression (MLR) model
with errors in the input variables.

Y=(8+0U R (1)
where Y—[nx1] vector of values of the dependent variable, § —[n xkl ma-
trix of true values of independent variables, which, however, are inac-
cessible for observation, B—I[(k+1)x1 vector of parameters to be evalu-
ated and a perturbation vector (which is often called model errors). In-
stead of true values of independent variables ¢, variables available for
observation are

X=%f+¢ (2)

where € represents a matrix of errors in independent variables.
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For this model the usual MLSEs of parameters B

B=(xx)"x (3)

lose their optimal properties. They are even asymptotically biased
and are unconsistent [1,3]. At the same time, they probably remain the
best among all estimates, which are calculated only using the observed
values of the input variables X and the output variable Y. Therefore, it
is of interest to investigate the influence of errors in input variables on
the choice of the optimal MLR in the sense indicated above. This study
was carried out by simulation using a specially developed software in
the MATLAB environment.

Simulation modeling was carried out as follows. It is assumed
that m inputs are possible, of which only k inputs actually affect the re-
sponse of the system. Therefore, an array of random numbers Xfull
[nxm] was generated, the contents of which were considered as m possi-
ble inputs (here n is the sample size). From this array, the subarray was
chosen as k input influences, that really affects the response of the Y
system. But since we consider that input variables are observed with er-
rors, then elements of array Xk are superimposed with perturbations
simulating Ex errors. These perturbations were set as follows

Ex = Xk x diag(mean(Xk)) x sigmaX (4)

The parameter allows you to control the error level, and the co-
efficient, where mean denotes the calculation of the mean value, and
diag uses the diagonal element of the matrix, allows to obtain perturba-
tions proportional to the sample mean of each of the input parameters.
Then the array was calculated

X=Xk +Ex (5)
which was used to form the output of the system Y, caused by input ef-
fects X

Yn=Xx§. (6)

The exact values of the coefficients of the model B were also set
as initial parameters. However, the net response of the system to the in-
put effects in the classical linear regression model is unobservable,
therefore, as the observed system response,

Y=VYn+U. (7

Errors of the model U were set so

U = mean(¥n) x sigmal x randn(size(Y)). (8)
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Thus, it is possible to control the level of model errors U with
the sigmal parameter and set this level in proportion to the average
level of the system's exact response to the input effects due to the
mean(¥Yn) multiplier.

The initial data for searching optimal for the set of input pa-
rameters of the multiple linear regression model were Xfull and Y ar-
rays. As well as in the works [5,6] to select the optimal MLR, 5 criteria
were applied:

- the method of all possible regressions with the corrected coeffi-
cient of determination as the criterion of optimality (MR2);

- the method of all possible regressions with the corrected coeffi-
cient of determination as an optimality criterion and an estimate of the
significance of the M LR coefficients (based on t-statistics) (MR2t);

- a method of all possible regressions using the Mallows statistics
as an optimality criterion (Mlz);

- method of sequential elimination of input variables (BWE);

- a method of step-by-step inclusion of input variables (SWP ).

The algorithms of each of these criteria are presented in the
works mentioned above [5,6], therefore here are not given.

MLSEs (3), calculated from the observed sampling values, are
random variables. Therefore, any results, obtained on the basis of the
MLSEs, also include an element of randomness. However, when analyz-
ing the results of a set of numerical experiments carried out with un-
changed initial data, it is possible to establish the regularities character-
izing the regression analysis procedure under study.

In particular, since the true model of multiple linear regression is
known in advance in simulation simulation performed in accordance
with the above method, it is possible to estimate the percentage of iden-
tifications of the "correct” model using each of the above optimality cri-
teria.

Numerical experiments were carried out at such values of the ini-
tial parameters:

- number of possible input variables m = 10;

- the number of input variables that affect the output response of
the system k = 5;

- number of experiments num = 500.

Variable values were:
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- the level of errors in the input variables sigmaX ;

- sample size n.

The input effects and errors were generated using the randn
function of MATLAB, which produces pseudo-random sequences with a
distribution law close to normal. In this case, it is possible for each new
experiment to return the sensor of random numbers to the initial state.
Therefore, identifications using different optimality criteria were car-
ried out for the same sequences of sets of input variables, which is very
important in a comparative analysis of simulation data.

The results obtained are presented in the following table 1.

This table shows the percentage of identification of the "correct”
regression models when using 5 various criteria of optimality mentioned
above. "Correct” is a model in which only input variables that really af-
fect the output response of the system ("true” input variables) were in-
cluded. Bold type identifies cases when the number of "correct” identi-
fications exceeds 50%.

Incorrect identifications are generated by errors of two kinds:

- include "extra” input variables (identification error of the first
kind);

- Some of the "true” input variables (identification error of the
second kind) are not included.

From the point of view of further application of the obtained re-
gression model, identification errors of the second kind lead to more se-
vere consequences than errors of the first kind. In particular, estimat-
ing the regression coefficients for the "true” variables included in the
model turns out to be biased. [5] Therefore, in the table 1, along with
the percentage of "correct” identifications, the percentage of identified
models is shown in which some (or even all) of the "true” input vari-
ables were not included (this value is indicated in the table as "% with
a lack of "true” wvariab.").

The first column of the table 1 contains the results of identifica-
tions in the absence of any errors in the "true” input variables (sigmaX
=0).
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Table 1
Optimiza- | Volu- Error level in independent variables
tiQH ) me of sigmaX=0 sigmaX=0,1 sigmaX=0,2 sigmaX=0,5
criteria | samp- ["o5 " of % % of % % of % % of %
len correct with a | correct with a | correct with a | correct with a
identifi- | lack of | identifi- | lack of | identifi- | lack of | identifi- | lack of
cations | "true” | cations | "true” | cations | "true” | cations | "true”
variab. variab. variab. variab.
20 11,8 0,6 7,4 1,4 10,6 6,5 9,0 30,0
MR2 30 9,8 0 13,8 0,6 12,8 1,4 12,6 13,2
50 16,2 0 15,4 0 13,4 0,2 13,6 3,4
20 31,6 2,4 29,8 6,0 26,4 20,2 13,0 50,0
MR2t 30 37,6 0,4 40,6 1,4 40,0 4,8 23,8 61,8
50 44,6 0 42,6 0 44,2 0,8 36,4 18,6
20 86,4 12,5 69,0 30,0 40,2 58,6 9,0 81,0
Mlz 30 90,4 9,6 78,6 21,2 48,8 51,2 7,6 92,4
50 92,6 7,4 82,5 17,5 57,4 42,6 12,0 88,0
20 80,0 4,0 79,6 7,0 67,8 22,4 31,0 64,0
BWE 30 91,8 0 86,6 1,4 82,8 5,4 52,4 39,6
50 93,6 0 93,0 0 92,4 0,6 76,6 17,4
20 31,2 65,6 29,2 67,4 25,6 72,4 8,8 91,0
SwWpP 30 48,0 48,3 46,8 49 43,2 53,2 24,4 72,2
50 71,4 25,6 69,4 25 67,8 36,0 53,6 40,4

Analysis of the results. The data given show that errors in the

input effects of the level, which is of the order of 10% from the level of
the input itself, lead to a slight decrease in the percentage of "correct”
identifications (sigmaX = 0,1). The best stability in this case is the
identification method, which uses the algorithm to sequentially exclude
input variables (BWE). [2,5]. This algorithm allows you to get more
50% correct identifications, even when the level of errors in the input
variables is about half of the level of the values of the input variable it-
self (sigmaX = 0,5), with a sample size of at least 30. It is also impor-
tant that this algorithm, less often than the others analyzed, identifies
models with a lack of "true” input variables. In the work [6] also
shown that it is also the most rapid. The algorithm, based on the search
of all possible regression models, using Mallows statistics as the crite-
rion of optimality (Mlz) [5], also gives a high percentage of "correct”
identifications in the absence of errors in the input variables. However,
this percentage decreases faster than the BWE algorithm as the level of
errors in the input variables grows. In addition, almost all "incorrect”
identifications contain errors of the second kind, that is, they do not
contain some of the "true” input variables. The remaining identification
algorithms considered, with sample sizes up to 50 elements, give a low
percentage of "correct” identifications, even if there are no errors in the
input variables.
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Conclusions. Errors in input variables, the level of which is of

the order of 10%, do not lead to a significant reduction in the percent-
age of "correct” identification of multiple linear regression models. Con-
sequently, errors in measurements, the level of which is usually lower
10%, will not have a significant influence on the choice of the optimal
linear regression model for a set of input parameters. Among the con-
sidered algorithms of identification, the algorithm of successive exclu-
sion of possible input variables (BWE) has the best stability. It allows
you to get a high percentage of correct identifications at a level of er-
rors up to 50% from the level of the values of the input variable itself,
even for small sample sizes (from 30 before 50 values).
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