1(120) 2019 «CucTeMHbIe TeXHOJOTUU»

UDC 004.4
I.V. Ponomarev
RESEARCH OF EFFICIENCY OF DEVELOPMENT METHODS
PARALLEL APPLICATIONS ON .NET PLATFORM

Abstract. The development of parallel applications allows more efficient use of
the computing power of modern computers that have many processors and
cores. The Task Parallel Library for C# Multi-Thread Programming offers devel-
opers the methods for performing parallel tasks with varying productivity and
speed. For parallel programs, a situation may arise when a test run on the
same data yields different results due to changes in the order of calculations
performed in parallel. The study of the efficiency of parallelization methods is
useful in developing high-performance parallel applications.

Keywords: .NET, Task Parallel Library, Parallel, PLINQ, Task, Parallel.For, Paral-
lel.ForEach, thread, data parallelism, task parallelism.

Formulation of the problem. Today, most contemporary programming
languages in one form or another include tools that allow you to develop parallel
programs.

To take advantage of several kernels is relatively simple for server applica-
tions, where each thread can independently handle a separate request from the cli-
ent, but this is much more difficult to achieve for client applications, because in this
case, it may usually be necessary to modify the code that intensively uses the calcu-
lation, as follows:

- divide it into small pieces,

- execute each fragment in parallel in different streams,

- at the end of the implementation, combine the results into an effective way.

The study of the efficiency of parallelization methods is useful in developing
high-performance parallel applications.

Purpose of the research. Consider the Task Parallel Library (TPL) classes
for multithreaded C# programming that enhance the efficiency of multi-core proces-
SOrSs:

- Parallel LINQ (PLINQ);

- Parallel class;

© Ponomarev 1.V., 2019

132 ISSN 1562-9945

1(120) 2019 «CucteMHbIe TeXHOJOTUN»

- Constructs for Task Task Parallelism.

Conduct a comparison of the methods of parallelism on the possibilities of
accelerating the program.

Main part. The TPL library includes two levels of functionality [1]:

- The top level is for structured data parallelism: PLINQ and the Parallel class.

- The lower level contains a class for task parallelism Task [2].

The library of task parallelism allows you to create thousands of tasks with
minimal overhead. The Parallel and PLINQ classes automatically break down tasks
per unit of work, since they are built on the basis of the tasks of parallel parallelism.

PLINQ automatically parallels local LINQ queries. PLINQ is easy to use, since
splitting the task and combining results rests on it [3].

Parallel.For and Parallel.ForEach methods are similar to C # for loop opera-
tors for and foreach, except that iterations of the elements of the sequence occur in
parallel, rather than sequentially.

The problem of developing effective programs with the help of the Task class
is that parallel tasks must be quite voluminous, since the overhead of creating Task
objects, planning individual tasks and waiting for their implementation can be much
more than the cost of processing itself.

The PLINQ library provides the richest functionality: it automates all stages
of parallelism, including the division of tasks into tasks, the execution of these tasks
in different streams and the aggregation of results into one source sequence. Its use
is called declarative, since it simply declares what needs to be done in parallel, and
she cares about the details of implementation. In contrast, other approaches are im-
perative; in this case, it is necessary to clearly write the code for the division of the
task and the combination of the results. In the case of the Parallel class, it is neces-
sary to combine the results themselves, in the case of parallel structures of tasks,
you also need to split the task independently.

In order to compare the efficiency of the methods of parallelism, the prob-
lem of finding the integral space was chosen, namely, the calculation of the number
m is the simplest of the methods of numerical integration - the method of rectangles.

j 4 dx =r.
0

2
1+ x)

In parallel execution of calculations, for each method of parallelism the se-
quential algorithm has been modified taking into account specific features of the

ISSN 1562-9945 133

1(120) 2019 «CucTeMHbIe TeXHOJOTUU»

methods. Calculations are performed with different levels of parallelism - the num-
ber of tasks performed simultaneously to process the request.

The calculation with a parallel LINQ query uses the ParallelEnumer-
able.Range (Int32, Int32) method that generates a parallel sequence of inte-

gers in a given range, and the ParallelEnumer-
able.WithDegreeOfParallelism <TSource> (ParallelQuery
<TSource>, Int32) method that specifies the degree of parallelism for use in re-
quest:

return (from i in ParallelEnumerable.Range (O,
(Int32)CountRect) .WithDegreeOfParallelism((Int32) k)

let x = (1 + 0.5) * step

select 4.0 / (1.0 + x * x)).Sum() * step;.

The calculation using Parallel.For uses the method

Parallel.For (Int64, 1Int64, Action <Int64, ParallellLoop-

State>), which performs a for loop with 64-bit indices, providing the ability to run
iterations in parallel, as well as control the state of the loop and control of this state,
and the method

ParallelEnumerable.WithDegreeOfParallelism <TSource>
(ParallelQuery <TSource>, Int32),
with the property ParallelOptions.MaxDegreeOfParallelism, which speci-
fies the maximum number of parallel tasks included for this ParallelOptions in-
stance.

The Parallel.ForEach algorithm uses the method

Parallel.ForEach <TSource, TLocal> (Partitioner
<TSource>, ParallelOptions, Func <TLocal>, Func <TSource, Par-
allellLoopState, TLocal, TLocal>, Action <TLocal>)

which performs the foreach operation with the local flow data for the Parti-
tioner object, providing the ability to run iterations in parallel, configure the loop
parameters, as well as control the state of the loop and control that state, with the
property ParallelOptions.MaxDegreeOfParallelism, which specifies the
maximum number of parallel tasks that are included for this ParallelOptions in-

stance:

Parallel.ForEach (Partitioner.Create (0, (Into64)CountRect),
new ParallelOptions

{ MaxDegreeOfParallelism = (Int32)k }, () => 0.0,

(range, state, local) =>
Parallel computation 1 by separating work between tasks Task:
1) creates an array of tasks

134 ISSN 1562-9945

1(120) 2019 «CucteMHbIe TeXHOJOTUN»
Task[] taskArray = new Task[k];

2) uses the TaskFactory.StartNew (Action) method, which creates and

runs an integral amount calculation task:
taskArray[i] = Task.Factory.StartNew (obj =>

3) Expects completion of all tasks
Task.WaitAll (taskArray);

4) from each task in the array of tasks, individual data is collected.
foreach(may id task in taskArray) {

can data = id task.AsyncState as CustomData; ...
Testing of programs with different methods of parallelism and for different
tasks in duration is carried out; the collected results are shown in Fig. 1 and Fig. 2.

Herpueani zagganna Tpueami zapmanmns
35 35
3 3
25 25
2 2
15 15
1 1
1 2 3 4 5 6 i 8 1 2 3 4 5 6 7 8
= Task PLINQ s===Paralle]l For s===Parallel ForEach =—Task PLINQ ===Paralle]l For me==Parallel ForFach

Figure 1 - Graphs of acceleration dependence on the number
of threads for short and long tasks

Conclusions. For short tasks, the Parallel.ForEach, Parallel.For and PLINQ
methods have a bit higher acceleration than long-term tasks.

All methods of parallelism show the greatest efficiency when matching the
number of parallel threads to the number of CPU cores. This is due to the fact that
the lack of overloading the processor with too many active threads prevents the per-
formance drop that occurs when the operating system is forced to perform a large
number of costly switching operations on the context.

ISSN 1562-9945 135

1(120) 2019 «CucTeMHbIe TeXHOJOTUU»

The methods of parallelism to accelerate the work of the program are in the
following sequence, from the fastest:
Parallel.ForEach,
Parallel.For,
Task,
PLINQ.
REFERENCES

1. Parallel Programming in .NET — 2018 [Electronic resource]. — Access mode:
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/index.

2. Task Parallel Library (TPL) — 2017 [Electronic resource]. — Access mode:
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-
parallel-library-tpl.

3. Parallel LINQ (PLINQ) - 2017 [Electronic resource]. — Access mode:
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/parallel-ling-
pling.

REFERENCES

1. Parallel Programming in .NET — 2018 [Electronic resource]. — Access mode:
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/index.

2. Task Parallel Library (TPL) - 2017 [Electronic resource]. — Access mode:
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-
parallel-library-tpl.

3. Parallel LINQ (PLINQ) - 2017 [Electronic resource]. — Access mode:
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/parallel-ling-

pling.

136 ISSN 1562-9945

