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MATHEMATIC SIMULATION OF GENERALIZED PROBLEM OF HEAT-
EXCHANGE IN THE BODIES WITH HEMISPHERICAL SHAPE

Abstract. The article presents the first mathematical model for calculating temperature fields of
hemispherical bodies, which approximately simulates operation of the diamond-drilling bit and
takes into account angular velocity of drilling operations and finite velocity of heat conduction,
and which was created as a physicomathematical boundary problem for hyperbolic equation of
heat conduction with the Dirichlet boundary conditions. Besides, a new integral transformation
was formulated for the two-dimensional finite space, with the help of which and with the help of
finite element method and Galerkin method a temperature field was found in the form of
convergence series.
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Introduction.While estimating any territory by its potential hard-
mineral resources, the most critical problem is improvement of geological,
technical and economic efficiency of drilling operations, which is impossible
without up-to-date technical and technological support.

Well-drilling is the main method of mineral exploration, and diamond
drilling with using of diamond-drilling bit is the most effective today and will
be the most affordable in the future method for drilling wells in hard rock.

During the work, diamond-drilling bit is heavily heated due to the heat
emission in the contact area and is cooled by a powerful stream of the drilling
mud.

Taking account of the temperature effect creates a basis for predicting
possible rate of the diamond-drilling mechanical velocity and choosing
correct technological parameters and objectively controlling them during the
drilling operations, and makes it possible to find proper ways for improving
the diamond tool.
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The issues of increasing of productivity and improving of quality and
efficiency of drilling operations through the creation, implementation and
improvement of diamond cutting tools are of continuing relevance.

Overview of the latest researches and publications. Analysis of
papers [1-3] showed that most of the results are just partial, there is no
common opinion about physics of drilling operations, and all of the known
models do not allow predicting temperature of diamond-drilling bit heating
during the operation with taking into account angular velocity of the drilling
operations and ultimate velocity of the heat conduction.

Objective of the work. In order to simulate a temperature field, it is
necessary to approximate shape of the bit to classical one and to accept some
reasonable simplifications. In view of the small size of drilling diamonds in
comparison with the size of the matrix, and their high thermal conductivity,
let’s assume that effect of diamond geometry is negligible.

Objective of this work was to construct a new mathematical model for
calculating temperature fields of hemispherical body, which approximately
simulates shape of the diamond bit, in the form of a boundary value problem
of mathematical physics and to find solutions for this boundary value
problem.

Presentation of the main research material. According to [4],
contact temperature ¢, on the surface of the bit can be represented as a linear
dependence on the power N used for cutting:

t, :Lke +L]k N+sH+t,
0, )" (1)

where k.is index of heat exchange intensity between diamond bit and

P

washing fluid; Q is mass consumption of washing fluid; ¢, is isobaric heat

capacity of washing fluid; #, is coefficient of heat flow distribution between
the rock and the bit; H is current depth of the well; s is thermal gradient
coefficient; %, is temperature on the rock surface.
Let’s consider calculation of temperature field of hemispherical body
in cylindrical coordinate system (r,p,z) of radius R with generating line
V4

2 2 . . . (Oa_sR) .
r=+R*—(z—R) and with center in the point { 2" ) (Fig.1).
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b

Figure 1- Hemispherical body with generating line » =+/R* - (z - R)’

The body rotates around the OZ axis with constant angular velocity ),
and rate of heat conduction is known. Heat-transfer properties of the body do
not depend on temperature, and internal sources of heat are not available. At
the initial time, the body temperature G, is constant, and, according to (1),

temperature V(go,z) on the lateral surface is known and does not depend on
time. At z =R, value of temperature G,(r,¢) is known.

In [5], a generalized energy transfer equation was obtained for a
moving element of continuous medium with taking into account finiteness of
heat conduction velocity. According to [5], generalized equation of energy
balance in the solid, which rotates around the OZ axis with constant angular
velocityw, and whose thermophysical properties do not depend on
temperature, and no internal heat sources are available, is expressed in
cylindrical coordinate system as:

oT oT 0T 0°T 0T 10T 1 0°T o°T
YO+ O—+7,| —+ =l —SHt——+S5—+— (2)
ot op ot oot or~ ror r-op- Oz

where y —is density of the medium; c is specific heat capacity; 7, is relaxation
time; T(p, 0,2z, t) is temperature of the medium; A - is heat conductivity coeffi-
cient; t is time.

In terms of mathematics, problem of determining temperature field of
the body consists in integrating differential equation of heat conductivity (2)

into the domain L = {(p, gp,z,t)‘p € (O, 1- (z - 1)2 l = (0,277), zZe (O,l),t € (O,oo) }’

which, with taking into account the accepted assumptions, will be written as:

ISSN 1562-9945 57



«CucreMHi TexHonorii» 6 (125) 2019 «System technologies»

06 06 0’0 0’0 al|00 100 1 0°0 0°0
—+O——+T, — +7,0 =— |5ttt 55+t (3)
ot o ot opot R |0p~ pop p 0@~ oz
with initial conditions

blp.p.20)=0, 220200 4)

and with boundary conditions

oN1=(1) 0.2 )= Gl 2), 5)
0(p:p.1.t)=Ap:9), ©)
T -G
where 6 = (o ;D’Z’t(); ¢ is relative temperature of the body; « = i}/ is heat
max 0 c

conductivity  coefficient; 7 =max{V(p,z).G (r.@);, P=5; Z=

e
G(gp, z), A(p, qo) € C(O,27r).

In this case, solution of the boundary problem (3)-(6) &(p,p,z,t) is
twice continuously differentiated by p and ¢, z, is once differentiated by t in
the domain D and is continuous on the D [6], i.e. 8(p,p,z,t)e C**(D)NC(D),
and functions G(¢p,z),A(p,9), 8(p,0,z,t) can be expressed by the Fourier com-
plex series [6]

0p.p.z.t)  [6,(p.z1)
Glp.z) =351 G,() -expling) 0
Ap.o) | "L AL0)
where
6.p.20) |, [0lo.pzt)
G,(z) = Glp.z) - exp(-ing)de,
A, (p) "I Alp.o)

0,(p.2,1)= 0" (p,z,0)+i60(p,z,1), G,(z)=G(z)+iG(2), A, (p)= A (p)+iA" (o).
In view of the fact that 6’(,0, o, z,t) is a real-valued function, let’s confine our-

selves by considering only 6, (p,z,t) for n=0,1,2,....because 6 (p,z,t) and
0_(p,z,t) are complexly conjugate [6]. By putting values of functions from (7)

into (3)-(6) we receive the following system of differential equations:
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2
e +7,9 g0
op> p op p> " oz (8)

ot "o "ot ot R’

with initial conditions
060" (p,z,0)

0" (p,2,0)=0, —n 2l 20
' (p.2,0) o 9

and with boundary conditions

0 (1=(=1) ,21)=GO(2) (10)
0! (p.1,t)= AY)(p) (11)

where 9" =-on; 9 =wn; m, =2, m,=1; i=1,2.

ey

In order to solve the boundary problem (8)-(11), let’s employ the inte-
gral transformation:

flu,, )= J:M(p, zu,,) p-f(p.z)do (12)

where ¢(x, VoM, ) 4, are intrinsic functions and intrinsic values.

Classical problem of intrinsic values and intrinsic functions is
formulated as a problem of defining values for numerical parameters (intrinsic
values) u,,and functions (intrinsic functions) ¢(x, v, yn,k), which are

identically not equal to Zero in the domain
—_ 2
== {(x’y)‘ ye(0,1)xe (O’ 1-(z-1) )}, and satisfy the equation:

0% 104 n’ 024

ax2 X ax x2 ¢ :un,k ¢ ayz ( )

and subsidiary conditions

AN1-C-1 v, )0, (14)
¢(x’1: /un,k): 0 (15)
where Hx,y, 1, ) C(E) = fulx,y) e CE):0,u(x,y) e CE), Va, |al<2};

ad
0 u(x, y):w;\a = a, +a, — is multiindex, components of which are
¢ ox™ Ox3?

whole integral numbers.

Let’s find intrinsic values u,,and intrinsic functions ¢(x,y,ﬂn,k) by

solving problems (13) - (15) with the help of finite element methods and
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Galerkin method. To this end, let’s divide the domain into simplex elements

(Fig. 2):

3 (%3, 5]

2 (¥2¥3)
1 {x0y) \
X 7l

Figure 2 - Triangular element of the first order

¥

Then, function ¢(x, y) inside the simplex element is expressed through
the shape functions, N,,N, and N, with the known values of ¢, ¢,, ¢, in the
vertices of the triangle:

4.(x,y)=Ng, + N,g, + N =[N,]"{g.} (16)
where [N, ]=[N,,N,,N,1";{4.}={¢,.4,.4,}" ; inferior index (e) means free

simplex element.
For the i-th node (i = 1, 2, 3), the shape functions are expressed as:

N, (x,y): %(al. +b.x+ cl.y)

where @, =x,y, —x,¥,; b=y, =y, ;; ¢, =x, —x;
d=x,y, =Xy, + X, 9, =X,y +X, ¥, =X, ),; i, j, k is sequent numbering of nodes in

the simplex element while bypassing them counterclockwise.
In order to determine shape functions N,,N,,N,, it is convenient to

use coordinate L, inside the simplex element, which is determined by relation

of area of the triangle created by the point and side of the opposite vertex i, to
general area of the triangle:

L, :é'[(yz _y3)(x_xz)+(x3 _xz)(y_yz)];
) CEFS PO SR
L, :é'[(% _yz)(x_x1)+(x2 _xl)(y_yl)]'
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In case of linear simplex element, which includes three vertexes, shape
functions are in harmony with corresponding coordinate L, :
N =L, N,=L,, N,=L,.
Let’s put the approximate solution (16) into equation (13) and, as a re-
sult, we obtain the following equation:
2 2 2
[(fx +12 ay J[N i4, }+( %j[Ne]T{m:o (17)

Multiplying of the left side of the equation (17) by shape function [N, ]

and integrating by element e will give:

where

# 106 & . : .
I—HMH(& _ﬂ§+@éﬁNJdWH@hQ=£@mf§%[MJNJdWNQ}

By integrating I, along the x and y, we receive:
I =1-1,,

I—DWJ“N] dy+ I[N]a[Ny] }{@},

I _”{a[N]a[N] LOINJON.T"  [NJOIN.Y
o, G

o o> o . }h@%@}

By taking into account identical relation

92 it 2P v =tul 22 ay 22 ax | =1, 22
lwﬁdwy%wwgy&k@+@d%jwadr

we receive
AN, T
{j[zv] P }{@},

where 5/, is outer normal derivative; IF dI’ is boundary curvilinear integral.

Summing of all elements will give us:

{I [V, ]a[N I }{m + ;Ij(un —’;—] [NV, T dxdyid.} -

dxd 0
yig.} =10} (18)

Zﬂ-ﬂNlamq 0[N,]JO[N,]" [N,O[N,T
e o, Ox oy oy X ox
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By multiplying the augend (18) by the expression {#, }{¢. }" we receive:

I =Z¢e}T{I[Ne]a[Ne] dr}m}:zb ({¢e}T[Ne])'(3([]\€l—nw‘?})dT}=

r, on T,

o4
Ze:D / on }
In this case, the boundary curvilinear integrals /", of elements inside

the domain = is reduced because, while calculating the curvilinear integrals,
directions of bypassing the boundary are opposite for each pair of the

neighbor elements (Fig. 3).

i.éﬁ s %5 ¥s ]

(@.x. 3 ) [‘3}:11 V)

Figure 3 - Directions of bypassing the boundary inside the domain =

As a result, only the curvilinear integral remains on the boundary I' of
the entire domain = Although such an assumption is one of the limitations
for the finite element method, it is a relatively good approximation. Then,
taking into account the Dirichlet boundary condition, one can ignore the first
term in (18).

In this case, (18) takes the following form:

[K]+ u,, - [M]=10} (19)
where
O e e M A
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(M1=Y ([ [N ][N, ] dxdy - {g,}.

Therefore, intrinsic functions ¢(x, Vol g ) and intrinsic values x,, can

be found from (19), and formula of inverse transformation takes the following

form:

f(p.2)=3. Aozt )2 Flu,). (20)
(o2, u,, )

Let’s employ the integral transformation (12) for the system of differ-
ential equations (8), and, as a result, we receive the following system of ordi-

nary differential equations:

dgn(i) N dé_)n(m;) d26_)n(i) a : .
L e L S ICUI)

with initial conditions

0" (u,,.1)=0, el o, (22)

)2 8¢( 1_(Z_l)zsznun,k) a¢(p’znun,k)
op oz

The curvilinear integral is calculated by the closed positively-oriented contour
(Fig. 4):

GY(2)dz - § p6"" dp.
L

k. |

p=1—(z—1f

B
L

0 ’

Figure 4 - Closed contour with generating line: p=4/1-(z—1)’

Let’s apply the Laplace integral transformation [7] with initial condi-
tions of (22) to the system of integral equations (21):

F6)=[r)e ar
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As a result we receive a system of algebraic equations relatively to the

0

Ol -
Qn,k _ gn(z) (23)
lLln,k

6’ + 9 (9 +Z'S(9 )+Tr325n(1)=qn’{

where i=1,2; G0 :%Iun,k .

Having solved the system of equations (23) we receive:

50 _ k Qb (Trs2 +5+q,, )+ (1" onQ(1+s7,) ’ (24)

(Z'rs2 +5+q,, )2 +o’n*(1+s7,)
where ¢, :%; (i=12)

By applying the Laplace formula of inverse transformation for the ex-

pression of function (24), we receive the following original functions:

(an’ )= ank< ){ ( ) [(er +1)+1, oan1]+Q()( ) [rrmn—(ersj +1)i]}-

(e%t“l) 4':§:CHJ<(51)'{féﬁl(si)'[(ZTrsi'*1)"Tr°nli]4'f)§1(si)'[Trqﬂl*‘(zrrsi'%1)1]}’

(25)

61(12)<un,k’t)zicn,k (s ){flnzl)((s] )-[(ersj +1)+rrmni]—f2nl}< (s )-[trmn—(ZTrsi +1)i]}-

Il
—_

(esit —1) +Zgn)k(sj ){f)fl)( (s]. )-[(ersj +1)—rrmni]—f2£3< (s]. )-[rrmn+(2rrsj +1)i}}

(26)
0.5s'a,,
(22'rsj + 1)2 +(z,0n)’

where Cok (sj ): , and values of s, for j=1,2,3,4 are deter-

mined by the formulas
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(rra)ni - l)i \/(1 + rra)ni)2 —-47,q,, (rra)ni + l)i \/(1 - fra)ni)2 -4r.9,,

b2 27, P 27,

By this way, and by taking into account formulas of inverse transfor-
mation (7) and (20), we receive a temperature field of hemispherical body,
which rotates around the OZ axis with constant angular velocity , with tak-

ing into account finite velocity of the heat conductivity:

0(pp.z0)= 343 (6 (1) +i-62(u, 1) ] Ap,z,ﬂnqk)z }exp(inqﬂ)’
n=—n | k=1 H¢(/0’Z’ﬂn,kx‘

where values for @(‘)(yn,k,t) ,0 (2)(yn,k,t) are determined by formulas (25),(26).

n

Conclusions. It is the first mathematical model developed for calcu-
lating temperature fields of hemispherical body, which approximately simu-
lates operation of the diamond-drilling bit and takes into account angular ve-
locity of drilling operations and finite velocity of heat conduction, and which
was created as a physicomathematical boundary problem for hyperbolic equa-
tion of heat conduction with the Dirichlet boundary conditions.

Besides, a new integral transformation was created for the two-
dimensional finite space, with the help of which and with the help of finite
element method and Galerkin method a temperature field was found in the
form of convergence series.

The obtained solution can be used for predicting possible rate of the
diamond-drilling mechanical velocity, choosing correct technological
parameters and for objectively controlling them during the drilling
operations; besides, it makes possible to find proper ways for improving the
diamond-bit operation.
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MamemamuyHe Moden0B8aHHA y3a2a1bHeHOT 3ada4i mensoo6MiHy
min niscgpepuyHoi popmu

[TobydosaHa mamemamu4yHa Mooesib PO3PAXYHKY NOJII8 memnepamypHUX nosis 8 niscge-
pUYHOMY MINi, 3 YpaxyBaHHAM KIiHUeBOi WBUOKOCMI nNowupeHHs menJa, ske 06epmaemscs, y
BU2/1A01 Kpaliosoi 3a0ayi Mamemamuy4Hoi @i3uxku 014 2inepboNiyHO20 PiBHAHHA Menaonposio-
Hocmi. [lobydosaHe iHmMezpasibHe nepemgopeHHs O/ 0BOBUMIPHO20 KiHUEB020 npocmopy, i3
3aCMOCYBAHHAM K020 3Hali0eHO memnepamypHe nose y Bu2iadi 36iXHUX psoiB No yHKYIAM
Qyp’e.

Mathematic simulation of generalized problem of heat-exchange in the bodies with
hemispherical shape

A mathematical model for calculating the fields of temperature fields in a hemispherical
body is constructed, taking into account the final velocity of rotating heat propagation, in the
form of a boundary value problem of mathematical physics for the hyperbolic equation of
thermal conductivity. An integral transformation for a two-dimensional finite space is
constructed using a temperature field in the form of convergent Fourier functions.

Bepauuk Mwuxaitno I'eHHazniiioBuu - KaHauaat ¢isMKo-MaTeMaTUUYHUX Hayk, JO-
1leHT, HallioHa/ibHMI1 TeXHiUHMI yHiBepcuTeT "[IHIMTpOBChKa IMOJIiTEXHIKA", TOLIEHT Ka-
dempu mporpaMHOro 3abe3neyeHHs] KOMITI0OTepHMX cucTeM, M.JIHipo, YKpaiHa.

Beppuuk Mwuxaun TI'eHHagbeBUM4 - KaHOMZAT (U3MKO-MaTeMaTUUYeCKMUX HayK,
IoueHT, HallMOHa/IbHBIN TeXHUYeCKMil yHuBepcuTeT "JIHernmpoBCKas IOJUTEXHUKA',
IOIeHT Kadeapbl MPOrpaMMHOIO obecreueHuss KOMIIbIOTEPHBIX cucTeM, M.JIHernp,
YKpauHa.
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