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PARAMETER ESTIMATION FOR COMPLICATED NOISE ENVIRONMENT 

 

Abstract. For a complicated noise environment the use of M-estimator faces a problem of choos-

ing a cost function yielding the best solution. To solve this problem it is proposed to use a super-

set of cost functions. The superset capabilities provide constructing a parameter estimation 

method for complicated noise environment. It consists in tuning the generalized maximum like-

lihood estimation to the current noise environment by setting values of three free superset pa-

rameters related to the scale, the tail heaviness and the form of noise distribution, as well as to 

the anomaly values that presence in data. In general case, this method requires to solve the op-

timization problem with a non-unimodal objective function, and it can be mostly implemented 

by using the zero-order optimization methods. However, if the noise environment has known sta-

tistics, the proposed method leads to the optimal estimation. If the noise environment is compli-

cated or does not have a complete statistics, the proposed method leads to the more effective 

estimates comparing to those of mean, median, myriad and meridian estimators. Numerical 

simulations confirmed the method performance. 
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Introduction. The relevance of the parameter estimation problem for 

complicated noise environment is determined by the diversity of data, noise 

and anomaly models [1]. In such a case the traditional approach to parameters 

estimation is based on the M-estimation method [2]. However, within the M-

estimation framework there is a problem of choosing a cost function that 

should provide the best solution for the current noise environment. Unfortu-

nately, solving this problem is complicated by necessity to choose among a 

large number of known and pretty similar cost functions. For example, there 

are the Tukey’s cost function [2], the Hampel’s cost function [3], the Andrew’s 

cost function [4], the Meshalkin’s cost function [5], etc. To eliminate this 

shortcoming it is proposed to use a superset of cost functions [6]-[7], which 

generates various cost functions by setting values of three free parameters. In 

this case, the use of the generalized maximum likelihood method leads to a 
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new method of parameter estimation. This method can provide the optimal 

data processing for the noise with a known statistical nature as well as it can 

provide the tuning to best results for the noise with unknown statistics. In the 

latter case, the tuning can be done by training. 

Problem formulation. For simplicity of consideration, let a data 

model be a constant and let this constant is observed in additive contami-

nated noise. Then the problem to determine a constant value is a problem to 

estimate the location parameter  for the noisy data elements  

Nnxn ,...,1;  . Using the idea of M-estimation [2], this problem is: 







N

i
ix
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)(minarg* ,     (1) 

where )(x  is an arbitrary function [2], which is referred to as either the cost 

function [8], the loss function or the contrast function [5]. This function forms 

the objective function for a minimization problem. The problem formulation 

is to choose such a function )(x  which can be tuned to the current noise en-

vironment. The goal of this research is to present the parameter estimation 

method for complicated noise environment. 

Analysis of recent research and publications. In [6]-[7] the super-

set of cost functions is proposed. It is defined as: 
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where   is a smoothing parameter ( 0 ); q  is a smoothing degree parame-

ter (  q0 );   is a parameter of the form of cost function ( 1 ; 

q ); ]1)|/|1/[(1)( /
0

),,(   qqq
S xxk  is a constant, which is necessary to 

perform the transformations of cost functions one to another within the su-

perset framework; 0x  is a normalization point, at which the equality: 

1)( 0
),,(   xq

S  is ensured ( 10 x  is supposed usually). The superset has the fol-

lowing properties. Assuming 10 x  and using (2), one can obtain that 
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where 

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
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x

x
x  is the “zero-one” cost function called also the Titch-

marsh’s cost function [6]-[7].  Equation (3) indicates that if  , the limit-

ing case of superset is the cost function with the form either of quasi-norm 

(for 10  q ) or norm (for  q1 ) of the mathematical space. Equation (4) 

indicates that if 0 , the limiting case of superset is the cost function with 

the form either of quasi-norm of L -space (for 10  ) or norm of 1L -space 

(for 1 ), and with the form of the 1-norm of 0L -space (for 0 ). 

Thus, the superset encompasses the whole set of possible norms and quasi-

norms of pL -space, where  p0 . In addition to this, from (2) one can ob-

tain that 
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The cost function (5) with 1q  and 2q  becomes the cost function of Gon-

zalez-Arce [9] and Aysal-Barner [8], respectively. Thus, according to the value 

of  , the superset can be divided into the following main sets. They are [7]: 1) 

the set of the “q-smoothed root” cost functions (for 10   and q ), in-

cluding the pseudo-Huber's cost function (for 1  and 2q ); 2) the set of 

the “q-smoothed logarithmic” cost functions (for 0 ), including the Gon-

zalez-Arce's cost function and the Aysal-Barner's cost function; 3) the set of 

the “Demidenko’s q-smoothed” cost functions [10] including the Geman-

McClure's cost function [11] (for 2  and 2q ); 4) the set that contains 

just the Titchmarsh’s cost function. 

The superset can be modified by equalizing the behavior of its cost 

functions at the zero. This expands the superset by including in it the general-

ized Meshalkin’s cost function [7] 
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where the value of   must be recalculated with respect to the original value of 

  for the superset. From (7) it follows if  q0  and 0 , the cost func-
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tion (7) tends to the cost function (6). But if  q0  and  , then (7) 

tends to qx || . On the other hand, if 0  and 0q , then (7) tends to (6) also. 

But if  00 x  and q , then (7) tends to the "inverse" rectangular 

cost function, which has the shape of a rectangular pit of 2  wide, i.e. 
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The use of (8) transforms the maximum likelihood method into the histogram 

method, where the histogram bin width is equal to 2/ . 

The modified superset of cost functions is obtained by modification of 

  value. This value is modified in such a way that the second derivative at 

zero for any cost function, which belongs to the superset, should be equal to 

the second derivative at zero of the “q-smoothed logarithmic” cost function. 

Using 10 x , this is achieved by solving the non-linear equation [7]: 

]/11ln[)/(]1)/11[( loglog

/ qqqqq q   ,  (9) 

where 
log

  is the given smoothing parameter for “q-smoothed logarithmic” 

cost function, and   is the smoothing parameter to be calculated from (9) for 

given values of 
log

 ,   and q . Such calculations performed by the Newton's 

method usually require about 3-5 iterations. In particular, for 1.0
log

 , 2q  

and   values: 1, 0.5, 0, -1, -2, -100, the following   values are obtained: 

0.024, 0.062, 0.100, 0.166, 0.220, 1.519 . It is seen that the third value of  , 

which corresponds to 0 , is equal to 1.0
log

  . But some values of   have 

become less than log
  while others have become larger.  

To recalculate the value of   in (7) it is necessary to solve the non-

linear equation:  

]/11ln[)]/1exp(1[ loglog

qqqq  ,   (10) 

where   is unknown, log  is given, and 10 x . The solution of (10) can also be 

obtained by the Newton method. However, for modified superset the general-

ized cost function (2) tends not towards the Titchmarsh's cost function, but 

rather towards the generalized Meshalkin's cost function with recalculated 

value of  . On the other hand, as mentioned above, the Meshalkin's cost 

function tends to the Titchmarsh's cost function as 0 . However, for large 
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enough value of q  (e.g., 50q ), superset modification loses any sense since 

in this case the cost functions of the modified superset are practically the 

same as the cost functions of the original superset.  

Summarizing, it can be concluded that considered superset covers a 

very large number of cost functions. Therefore, this superset can be used to 

tune the maximum generalized likelihood method to the noise environment 

of various types.  

Main results. Based on (1) and (2), the proposed estimation method 

consists in solving the following minimization problem: 
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where values of  ,  , and q  should be adjusted to the current noise environ-

ment. The processing of any data sequence Iixi ,...,1;   consists in using a 

digital window of length N that slides through the data sequence and produces 

the current output values by solving the minimization problem (11).  

Since the objective function in (11) is non-unimodal, it is necessary to 

use the zero-order optimization methods to minimize it. Generally saying, 

this is a difficult problem. But its computational complexity can be reduced by 

using a quasi-optimal value of   which coincides with the value of some data 

element. Such quasi-optimal value turns at least one of the terms of (11) into 

zero. In addition, if 1q , the quasi-optimal value coincides with the optimal 

value. However, for this case the first derivative of objective function will not 

be zero at its minimum, since it will have a discontinuity at this minimum. 

Therefore, in general case it is impossible to apply the basic approach, which 

consists in replacing the optimization problem (11) by the problem of solving 

a nonlinear equation [3]. 

Using (5) as well as using the inequalities: 0),,(  q

Sk  for 10   and 

0),,(  q

Sk  for 0 , the problem (11) can be represented as an union of 

the following three problems: 
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which can be solved in a parallel way. For each of (12) – (14), one can always 

specify an admissable search area of global minimum. 

Simulations. Figure 1 shows the plots for the sum of the constant that 

equals to 1 and the random realization of noise environment numbered from 

#1 to #6, where dots denote data element values. Noise environment number 

(#) has the following sense. #1 denotes the sum of Gaussian noise and random 

wide Gaussian pulse of unit amplitude, where the latter has the half-width, 

which is equal to the window length for 15 consecutive samples, and the 

uniform distributed location within the range from 30th to 60th sample. #2 

denotes the sum of Gaussian noise and the interference in the form of a ran-

dom sequence of narrow positive Gaussian pulses. The amplitude, location, 

and half-width of these pulses are uniformly distributed in [0, 2], [1, 101] and 

[0, 2] intervals, respectively. #3 denotes the sum of Gaussian noise and 

outliers with a probability of their occurrence p = 0.56 and with the 

amplitudes uniformly distributed in [2, 3] interval. #4, #5 and #6 denote the 

sum of the Cauchy noise with the same anomalies that correspond to the #1, 

#2 and #3, respectively. During simulations, the Gaussian noise: 

)]2/()(exp[
2

1
)( 22 


 mp  had a zero mean 0m  and a standard 

deviation 1.0 ; the  Cauchy noise: 
22)(

1
)(







p   had a zero 

location parameter 0  and a scale parameter 1.0  . 

Figure 2 shows the objective functions corresponding to the random 

realizations in Figure 1. They are constructed for the following values of free 

parameters. The objective function represented by curve 1 is constructed for 

10 , 4  and 2q . Since   and  , this objective function is 

quadratic in all plots in Figure 2. The objective function represented by curve 

2 is constructed for 10 , 4  and 1q . Since here   and  , 

this objective function is close to the sum of cost functions having the form 

||)( xx  . The objective function represented by curve 3 and constructed for 

1.0 , 0 , 2q  is the sum of cost functions having the form 
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)ln()( 22  xx . Finally, the objective function represented by curve 4 corre-

sponds to the best values of free parameters. They are: 1.0 , 16 , 

10q  (for #1 and #2); 1.0 , 16 , 2q  (for #3); 01.0 , 16 , 1q  

(for #4); 01.0 , 16 , 5.1q  (for #5); 1.0 , 4 , 2q  (for #6). It 

can be seen that the global minimum of curve 4 indicates to the desired value 

of constant value almost exactly, while for the other curves the global mini-

mum indicates to it in most cases inaccurately. 

 
a    b    c 

 
d   e   f 

Figure 1 - Random realization of noise environment: 

a – f are corresponded to #1 – #6 

 

a    b    c 

 

d   e   f 

Figure 2 - Objective functions for noise environment: 

a – f are corresponded to a – f in Figure 1 
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Figure 3 shows the Gaussian pulse estimation in a complicated noise 

environment caused by Cauchy noise ( 1.0 ) and positive outliers (their 

probability is 0.1). Figure 3a shows the input data sequence; Figure 3b  and 

Figure 3c show the estimation results obtained by the "good" tuning (  , 

0 , 2q ) and by the "bad" tuning (  10 , 0 , 2q ), respectively. 

 

a    b    c 

Figure 3 - Gaussian pulse estimation: a – input data sequence; b, c – "good" 

and "bad" tuning (pulse estimation – solid, true pulse – dashed) 

 

Discussion. The use of cost function 2||)( xx   always results with a 

large estimation error (curve 1 in Figure 2). However, the use of ||)( xx   

sometimes gives the larger error than that for 2||)( xx   (curve 2 in Figure 2c 

and Figure 2f). The use of )ln()( 22  xx  gives acceptable results (curve 3) 

for the noise environment of #1, #2 and #3. But for the noise environment of 

#4, #5 and #6 its application cannot be considered satisfactory. On the other 

hand, the use of cost functions, which are obtained by the proposed estima-

tion method, led to the best results (curve 4). Gaussian pulse estimation by 

the 100 random trials always gave a consistently good result. 

Thus, the results of numerical simulations confirmed the feasibility 

and effectiveness of the proposed estimation method. This is achieved by ad-

justing the values of its free parameters for a given noise environment. There-

fore, when working with a specific noise environment instead of obtaining the 

statistics necessary to determine the noise distribution and then choosing the 

appropriate cost function, one can tune the values of free parameters and use 

the proposed estimation method. 

Conclusions. For a complicated noise environment, it is suitable to 

use the estimation method based on the generalized maximum likelihood cri-

terion with the superset of cost functions. Its efficiency is achieved by tuning 
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the superset free parameters to the current noise environment. If the noise 

environment is simple and has known statistics, this method leads to the op-

timal estimation. If the noise environment is complicated and does not have a 

complete statistical description, this method leads to more effective estimates 

comparing to those of mean, median, myriad and meridian estimators. 
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Оцінювання параметрів у складному шумовому оточенні 
Розглядається проблема оцінювання значень параметрів моделі даних, отримува-

них у складному шумовому оточенні. Вирішення цієї проблеми грунтується на методі уза-
гальненої максимальної правдоподібності та на застосуванні супермножини вартісних 
функцій, яка надає можливість виконувати налаштування методу оцінювання на поточ-
не шумове оточення. Основний розгляд проведено для моделі даних у вигляді константи, 
який подано постановками відповідних задач оптимізації та обговоренням методів їх 
розв'язання. Представлено приклади чисельного моделювання з оцінювання значення кон-
станти, яка спотворена адитивним шумом та різними аномаліями, а також з оцінюван-
ня гауссівського імпульсу в складному шумовому оточенні. Зазначені приклади демон-
струють ефективність використання запропонованого підходу для оцінювання невідо-
мих параметрів.  

Parameter estimation for complicated noise environment 
The estimation parameter problem for data obtained in complicated noise environment is 

considered. The problem solving is based on the method of generalized maximum likelihood with 
the use of a superset of cost functions, which gives the opportunity to tune the estimation 
method to the current noise environment. The main consideration is given for data model, 
having form of a constant, and it is presented by corresponding optimization problems and by 
discussion of their solving methods. Simulation examples for estimating the constant value 
distorted by additive noise with various anomalies, as well as for estimating Gaussian pulse in 
complicated noise environment are presented. These examples demonstrate performance of 
proposed approach to parameter estimation. 

 

Вовк Сергій Михайлович - к.ф.-м.н., доцент, Дніпровський національний уні-

верситет, доцент кафедри комп'ютерних наук та інформаційних технологій. 
 

Вовк Сергей Михайлович - к.ф.-м.н., доцент, Днепровский национальный ун-

ситет, доцент кафедры компьютерных наук и информационных технологий. 

 

Vovk Serhii Mikhailovich - Ph.D, Associate Professor, Oles Honchar Dnipro National 

University, Associate Professor of Department of Computer Science and Information 

Technology. 

 


