«CucreMHi TexHosorii» 6 (125) 2019 «System technologies»
DOI 10.34185/1562-9945-6-125-2019-02
UDC 004.02

S.M. Vovk
PARAMETER ESTIMATION FOR COMPLICATED NOISE ENVIRONMENT

Abstract. For a complicated noise environment the use of M-estimator faces a problem of choos-
ing a cost function yielding the best solution. To solve this problem it is proposed to use a super-
set of cost functions. The superset capabilities provide constructing a parameter estimation
method for complicated noise environment. It consists in tuning the generalized maximum like-
lihood estimation to the current noise environment by setting values of three free superset pa-
rameters related to the scale, the tail heaviness and the form of noise distribution, as well as to
the anomaly values that presence in data. In general case, this method requires to solve the op-
timization problem with a non-unimodal objective function, and it can be mostly implemented
by using the zero-order optimization methods. However, if the noise environment has known sta-
tistics, the proposed method leads to the optimal estimation. If the noise environment is compli-
cated or does not have a complete statistics, the proposed method leads to the more effective
estimates comparing to those of mean, median, myriad and meridian estimators. Numerical
simulations confirmed the method performance.
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Introduction. The relevance of the parameter estimation problem for
complicated noise environment is determined by the diversity of data, noise
and anomaly models [1]. In such a case the traditional approach to parameters
estimation is based on the M-estimation method [2]. However, within the M-
estimation framework there is a problem of choosing a cost function that
should provide the best solution for the current noise environment. Unfortu-
nately, solving this problem is complicated by necessity to choose among a
large number of known and pretty similar cost functions. For example, there
are the Tukey’s cost function [2], the Hampel’s cost function [3], the Andrew’s
cost function [4], the Meshalkin’s cost function [5], etc. To eliminate this
shortcoming it is proposed to use a superset of cost functions [6]-[7], which
generates various cost functions by setting values of three free parameters. In
this case, the use of the generalized maximum likelihood method leads to a
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new method of parameter estimation. This method can provide the optimal
data processing for the noise with a known statistical nature as well as it can
provide the tuning to best results for the noise with unknown statistics. In the
latter case, the tuning can be done by training.

Problem formulation. For simplicity of consideration, let a data
model be a constant and let this constant is observed in additive contami-
nated noise. Then the problem to determine a constant value is a problem to
estimate the Ilocation parameter 6 for the noisy data elements
x,; n=1,..,N.Using the idea of M-estimation [2], this problem is:

n

N
0% =argmin ) p(x, ~0), M

where p(x) is an arbitrary function [2], which is referred to as either the cost
function [8], the loss function or the contrast function [5]. This function forms
the objective function for a minimization problem. The problem formulation
is to choose such a function p(x) which can be tuned to the current noise en-
vironment. The goal of this research is to present the parameter estimation
method for complicated noise environment.
Analysis of recent research and publications. In [6]-[7] the super-
set of cost functions is proposed. It is defined as:
pY () = KO+ x /)Y -1, 2
where o is a smoothing parameter (o > 0); ¢ is a smoothing degree parame-
ter (0<g<wm); B is a parameter of the form of cost function (-0o<B<1;
B<q); ki (x)=1/[(1+]|x,/a|?)?* ~1] is a constant, which is necessary to
perform the transformations of cost functions one to another within the su-

perset framework; x, is a normalization point, at which the equality:

WgOLBQ)

lowing properties. Assuming x, =1 and using (2), one can obtain that

(1+|x/a|q)ﬁ/q x|
fim (1+ x, /om)ﬁ/q | X, |°

(x,) =1 is ensured (x, =1 is supposed usually). The superset has the fol-

hm p(a B, q)(X) —

=[x [" 3)

and

hm @b (x)=1im
Ps () °H°°(OL+|X|)B/Q B

(a+|x])" —af {mﬁ; 0<p<1 @

1(x); —0<B<O’
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’

L x20 is the “zero-one” cost function called also the Titch-

where y(x)= {

marsh’s cost function [6]-[7]. Equation (3) indicates that if o — «, the limit-
ing case of superset is the cost function with the form either of quasi-norm
(for 0<g<1) or norm (for 1< g <) of the mathematical space. Equation (4)
indicates that if a — 0, the limiting case of superset is the cost function with
the form either of quasi-norm of L, -space (for 0 <B <1) or norm of L, -space

(for p=1), and with the form of the 1-norm of L, -space (for —oo<<0).

Thus, the superset encompasses the whole set of possible norms and quasi-
norms of L, -space, where 0 <p <oo. In addition to this, from (2) one can ob-

tain that
. In(1+|x/a %)
1 (@B (Y — 5
jmes ™ () In(l+ | x, /o) ®)
and
lim p{* (x) = 1(X). (6)

The cost function (5) with g=1 and q =2 becomes the cost function of Gon-
zalez-Arce [9] and Aysal-Barner [8], respectively. Thus, according to the value
of B, the superset can be divided into the following main sets. They are [7]: 1)
the set of the “g-smoothed root” cost functions (for 0 < <1 and B<gq), in-
cluding the pseudo-Huber's cost function (for =1 and q=2); 2) the set of
the “g-smoothed logarithmic” cost functions (for g =0), including the Gon-
zalez-Arce's cost function and the Aysal-Barner's cost function; 3) the set of
the “Demidenko’s g-smoothed” cost functions [10] including the Geman-
McClure's cost function [11] (for p=-2 and g=2); 4) the set that contains
just the Titchmarsh’s cost function.

The superset can be modified by equalizing the behavior of its cost
functions at the zero. This expands the superset by including in it the general-
ized Meshalkin’s cost function [7]

1-exp(—|x/al?)

(0,q) —
P = o x T (7)

where the value of o must be recalculated with respect to the original value of
o for the superset. From (7) it follows if 0 <g <o and o — 0, the cost func-
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tion (7) tends to the cost function (6). But if 0<g<ow and a — o, then (7)
tends to | x|”. On the other hand, if o >0 and q — 0, then (7) tends to (6) also.
But if O<a<x,<o and q— «, then (7) tends to the "inverse" rectangular

cost function, which has the shape of a rectangular pit of 2a wide, i.e.

0, | X |< o
P (x)=1(e-1)/e~0.63, |xl|=a. (8)
1, | x> a

The use of (8) transforms the maximum likelihood method into the histogram
method, where the histogram bin width is equal to a./ 2.
The modified superset of cost functions is obtained by modification of
o value. This value is modified in such a way that the second derivative at
zero for any cost function, which belongs to the superset, should be equal to
the second derivative at zero of the “g-smoothed logarithmic” cost function.
Using x, =1, this is achieved by solving the non-linear equation [7]:
a'[(1+1/a")"* =1]= B/ Qo In[1+1/af ], )

where a,, is the given smoothing parameter for “q-smoothed logarithmic”
cost function, and a is the smoothing parameter to be calculated from (9) for
given values of o, , B and g. Such calculations performed by the Newton's
method usually require about 3-5 iterations. In particular, for o, =0.1, g=2
and pB values: 1, 0.5, 0, -1, -2, -100, the following o values are obtained:
0.024, 0.062, 0.100, 0.166, 0.220, 1.519 . It is seen that the third value of o,
which corresponds to =0, is equal to a,, =0.1 . But some values of o have
become less than o while others have become larger.

To recalculate the value of o in (7) it is necessary to solve the non-

linear equation:
a’[l-exp(-1/a")]=a;, In[1+1/a] ], (10)
where a is unknown, a, . is given, and x, =1. The solution of (10) can also be

obtained by the Newton method. However, for modified superset the general-
ized cost function (2) tends not towards the Titchmarsh's cost function, but
rather towards the generalized Meshalkin's cost function with recalculated
value of o. On the other hand, as mentioned above, the Meshalkin's cost
function tends to the Titchmarsh's cost function as o — 0. However, for large
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enough value of g (e.g., ¢>50), superset modification loses any sense since
in this case the cost functions of the modified superset are practically the
same as the cost functions of the original superset.

Summarizing, it can be concluded that considered superset covers a
very large number of cost functions. Therefore, this superset can be used to
tune the maximum generalized likelihood method to the noise environment
of various types.

Main results. Based on (1) and (2), the proposed estimation method

consists in solving the following minimization problem:
N
mein{kg“’ﬁ’q’ D [A+1x,-61" /a”) - 1]}, (11)
n=1

where values of a, B, and g should be adjusted to the current noise environ-
ment. The processing of any data sequence x,;i=1,...,I consists in using a

digital window of length N that slides through the data sequence and produces
the current output values by solving the minimization problem (11).

Since the objective function in (11) is non-unimodal, it is necessary to
use the zero-order optimization methods to minimize it. Generally saying,
this is a difficult problem. But its computational complexity can be reduced by
using a quasi-optimal value of 6 which coincides with the value of some data
element. Such quasi-optimal value turns at least one of the terms of (11) into
zero. In addition, if g <1, the quasi-optimal value coincides with the optimal
value. However, for this case the first derivative of objective function will not
be zero at its minimum, since it will have a discontinuity at this minimum.
Therefore, in general case it is impossible to apply the basic approach, which
consists in replacing the optimization problem (11) by the problem of solving
a nonlinear equation [3].

Using (5) as well as using the inequalities: k{**® >0 for 0<B<1 and

kPP <0 for —oo<B <0, the problem (11) can be represented as an union of

the following three problems:

mein{i[(lﬂxn—elq /ocq)‘”q]}; 0<B<1, (12)
mein{N In(1+]x, -0/ /oaq)}; B+0, (13)
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max{i L }; —0<fB<0, (14)

0 =~ (1+ | Xn -0 |q /QQ)W/C[

which can be solved in a parallel way. For each of (12) - (14), one can always
specify an admissable search area of global minimum.

Simulations. Figure 1 shows the plots for the sum of the constant that
equals to 1 and the random realization of noise environment numbered from
#1 to #6, where dots denote data element values. Noise environment number
(#) has the following sense. #1 denotes the sum of Gaussian noise and random
wide Gaussian pulse of unit amplitude, where the latter has the half-width,
which is equal to the window length for 15 consecutive samples, and the
uniform distributed location within the range from 30th to 60th sample. #2
denotes the sum of Gaussian noise and the interference in the form of a ran-
dom sequence of narrow positive Gaussian pulses. The amplitude, location,
and half-width of these pulses are uniformly distributed in [0, 2], [1, 101] and
[0, 2] intervals, respectively. #3 denotes the sum of Gaussian noise and
outliers with a probability of their occurrence p = 0.56 and with the
amplitudes uniformly distributed in [2, 3] interval. #4, #5 and #6 denote the
sum of the Cauchy noise with the same anomalies that correspond to the #1,
#2 and #3, respectively. During simulations, the Gaussian noise:

p(€) = 1 -exp[-(¢-m)* /(26*)] had a zero mean m=0 and a standard
VJ2no
deviation o=0.1; the Cauchy noise: p(&)zz-% had a zero
T (E—9) +v

location parameter 3 =0 and a scale parameter v=0.1 .

Figure 2 shows the objective functions corresponding to the random
realizations in Figure 1. They are constructed for the following values of free
parameters. The objective function represented by curve 1 is constructed for
a=10, p=-4 and q=2. Since a>>oc and a >> v, this objective function is
quadratic in all plots in Figure 2. The objective function represented by curve
2 is constructed for a =10, B=-4 and gq=1. Since here a>>c and a >>v,
this objective function is close to the sum of cost functions having the form
p(x)=| x|. The objective function represented by curve 3 and constructed for

a=0.1, p=0, gq=2 is the sum of cost functions having the form
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p(x) =In(x* + a*). Finally, the objective function represented by curve 4 corre-

sponds to the best values of free parameters. They are: a=0.1, B=-16,
q =10 (for #1 and #2); a.=0.1, p=-16, q=2 (for #3); a.=0.01, B=-16, q=1
(for #4); a=0.01, B=-16, q=1.5 (for #5); a=0.1, B=-4, q=2 (for #6). It

can be seen that the global minimum of curve 4 indicates to the desired value

of constant value almost exactly, while for the other curves the global mini-

mum indicates to it in most cases inaccurately.
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Figure 1 - Random realization of noise environment:
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Figure 2 - Objective functions for noise environment:
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Figure 3 shows the Gaussian pulse estimation in a complicated noise

environment caused by Cauchy noise (v=0.1) and positive outliers (their
probability is 0.1). Figure 3a shows the input data sequence; Figure 3b and
Figure 3c show the estimation results obtained by the "good" tuning (a.=v,
B=0, q=2)and by the "bad" tuning (o =10v, B=0, g =2), respectively.
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Figure 3 - Gaussian pulse estimation: a — input data sequence; b, ¢ - "good"
and "bad" tuning (pulse estimation - solid, true pulse — dashed)

Discussion. The use of cost function p(x)=|x|* always results with a
large estimation error (curve 1 in Figure 2). However, the use of p(x)= x|
sometimes gives the larger error than that for p(x) = x|* (curve 2 in Figure 2c
and Figure 2f). The use of p(x)=In(x*+a’) gives acceptable results (curve 3)
for the noise environment of #1, #2 and #3. But for the noise environment of
#4, #5 and #6 its application cannot be considered satisfactory. On the other
hand, the use of cost functions, which are obtained by the proposed estima-
tion method, led to the best results (curve 4). Gaussian pulse estimation by
the 100 random trials always gave a consistently good result.

Thus, the results of numerical simulations confirmed the feasibility
and effectiveness of the proposed estimation method. This is achieved by ad-
justing the values of its free parameters for a given noise environment. There-
fore, when working with a specific noise environment instead of obtaining the
statistics necessary to determine the noise distribution and then choosing the
appropriate cost function, one can tune the values of free parameters and use
the proposed estimation method.

Conclusions. For a complicated noise environment, it is suitable to
use the estimation method based on the generalized maximum likelihood cri-
terion with the superset of cost functions. Its efficiency is achieved by tuning
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the superset free parameters to the current noise environment. If the noise

environment is simple and has known statistics, this method leads to the op-

timal estimation. If the noise environment is complicated and does not have a

complete statistical description, this method leads to more effective estimates

comparing to those of mean, median, myriad and meridian estimators.
JINTEPATVYPA / JIITEPATVPA

1. Rousseeuw P.J. Anomaly detection by robust statistics / P.]. Rousseeuw,

M. Hubert // WIREs Data Mining Knowledge Discovery. — 2018. - V. 8. - N. 2.

- P. 1-14. DOI= https://doi.org/10.1002/widm.1236.

2. Huber P. Robust statistics / P. Huber, E. M. Ronchetti. - Hoboken: Wiley. —

2009. - 370 p. DOI: 10.1002/9780470434697.

3. Hampel F. R. Robust statistics: the approach based on influence functions /

F.R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, W. A. Stahel. — Hoboken:

Wiley. — 2011. - 536 p. DOI=10.1002/9781118186435.

4. Andrews D. F. Robust estimates of location: survey and advances / D. F. An-

drews, P.]. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, ].W. Tukey. -

Princeton, NJ: Princeton University Press. — 1972. — 372 p.

5. Shevlyakov G. L. Robustness in data analysis: criteria and methods / G. L.

Shevlyakov, N. O. Vilchevski. — Utrecht: VSP. — 2002. - 310 p.

6. Borulko V.F. Minimum-duration filtering / V. F. Borulko, S. M. Vovk // Radio

Electronics, Computer Science, Control. — 2016. — N. 1. — C.7-14. DOI:

10.15588/1607-3274-2016-1-1.

7. Vovk S.M. General approach to building the methods of filtering based on

the minimum duration principle / S. M. Vovk // Radioelectronics and Commu-

nications Systems. — 2016. - V. 59. - N. 7 — P. 281-292.

DOI: 10.3103/S0735272716070013.

8. Aysal T. C. Meridian filtering for robust signal processing / T. C. Aysal, K. E.

Barner // IEEE Tr. on Signal Processing. — 2007. — V. 55. — N. 8. — P. 3949-

3962.

9. Gonzalez J. G. Optimality of the myriad filter in practical impulsive-noise

environments / J. G. Gonzalez, G. R. Arce // IEEE Tr. on Signal Processing. —

2001. -V.49. - N. 2. - P.438-441. DOI: 10.1109/78.902126.

ISSN 1562-9945 23



«CucreMHi TexHonorii» 6 (125) 2019 «System technologies»

10. Vovk S. Family of generalized Demidenko functionals for robust estima-
tion / S. Vovk, V. Borulko // Proc. XVIIth Int. Seminar/Workshop on Direct and
Inverse Problems of Electromagnetic and Acoustic Wave Theory (Tbilisi,
Georgia, September 24-27, 2012). — IEEE. — 2012. - P. 151-154.
11. Geman S. Bayesian image analysis. An application to single photon emis-
sion tomography / S. Geman, D. McClure // Proc. of the American Statistical
Association, Statistical Computing Section. — 1985. - P. 12-18.

REFERENCES
1. Rousseeuw P. J. Anomaly detection by robust statistics / P. J. Rousseeuw, M.
Hubert // WIREs Data Mining Knowledge Discovery. — 2018. - V. 8. - N. 2. - P.
1-14. DOI= https://doi.org/10.1002/widm.1236.
2. Huber P. Robust statistics / P. Huber, E. M. Ronchetti. - Hoboken: Wiley. —
2009. - 370 p. DOI: 10.1002/9780470434697.
3. Hampel F. R. Robust statistics: the approach based on influence functions /
F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, W. A. Stahel. — Hoboken:
Wiley. — 2011. - 536 p. DOI=10.1002/9781118186435.
4. Andrews D. F. Robust estimates of location: survey and advances / D. F. An-
drews, P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, J.W. Tukey. —
Princeton, NJ: Princeton University Press. — 1972. — 372 p.
5. Shevlyakov G. L. Robustness in data analysis: criteria and methods / G.L.
Shevlyakov, N. O. Vilchevski. — Utrecht: VSP. - 2002. — 310 p.
6. Borulko V.F. Minimum-duration filtering / V. F. Borulko, S. M. Vovk // Radio
Electronics, Computer Science, Control. — 2016. — N. 1. — C.7-14.
DOI: 10.15588/1607-3274-2016-1-1.
7. Vovk S.M. General approach to building the methods of filtering based on
the minimum duration principle / S. M. Vovk // Radioelectronics and Commu-
nications Systems. — 2016. - V. 59. - N. 7 — P. 281-292.
DOI: 10.3103/50735272716070013.
8. Aysal T. C. Meridian filtering for robust signal processing / T. C. Aysal, K. E.
Barner // IEEE Tr. on Signal Processing. — 2007. — V. 55. - N. 8. — P. 3949-
3962.

24 ISSN 1562-9945



«CucreMHi TexHosorii» 6 (125) 2019 «System technologies»

9. Gonzalez J. G. Optimality of the myriad filter in practical impulsive-noise
environments / J. G. Gonzalez, G. R. Arce // IEEE Tr. on Signal Processing. —
2001. - V.49. - N. 2. - P. 438-441. DOI: 10.1109/78.902126.

10. Vovk S. Family of generalized Demidenko functionals for robust estima-
tion / S. Vovk, V. Borulko // Proc. XVIIth Int. Seminar/Workshop on Direct and
Inverse Problems of Electromagnetic and Acoustic Wave Theory (Tbilisi,
Georgia, September 24-27, 2012). - IEEE. - 2012. - P. 151-154.

11. Geman S. Bayesian image analysis. An application to single photon emis-
sion tomography / S. Geman, D. McClure // Proc. of the American Statistical

Association, Statistical Computing Section. - 1985. — P. 12-18.
Received 02.12.2019.
Accepted 04.12.2019.

OuyiHto8aHHA napamempis y CKNAOHOMY WyMOBOMY OMOYeHH

Po3znsadaembcs npobsiema OUiHIOBAHHA 3HA4YeHb napamempis mooeni 0aHUX, OmMpuMysa-
HUX Y CKNAOHOMY WyMOBOMY OmMOYeHHI. BupiweHHs uiei npobaemu 2pyHmyemscs Ha Memooi y3a-
2a/IbHeHOi MakcumanbHoi npasdonodibHocMi ma Ha 3aCMOCYBAHHT CYyNePMHOXUHU BAPMICHUX
QyHKYIU, AKA HAOAE MOXUBICMb BUKOHYBAMU HANAWMYBAHHA MeMOOyY OUiHIOBAHHA HA NOMOY-
He wymose omoy4eHHA. OCHOBHUL p032/1A0 NpoBedeHo 014 MoOeni 0aHUX Y BU2A0T KOHCMAHmMU,
AKUl NoOaHo NocmaHoBKamu BIONOBIOHUX 3a0ay onmumizayii ma 0b62080peHHAM Memoois ix
po38'A3aHHA. [lpedcmasnieHo npuKaadu YucesabHO20 MOORMIOBAHHSA 3 OYiHIOBAHHA 3HAYEHHS KOH-
CMaHmu, AKa cnomsopeHa adumuBHUM WYMOM Ma PI3HUMU GHOMAIAMU, @ MAKOX 3 OUYIHIOBAH-
HA 2aycCiBCbKO20 IMNYJbCY B8 CKAAOHOMY WYMOBOMY OMOYEHHI. 3a3HaYeHT Npukaaou O0emoH-
cmpyroms e(hpeKmusHICMb BUKOPUCMAHHA 3anponoHOBAHO20 NiOX00y 014 OUYIHIOBAHHA Hesi0o-
Mux napamempis.

Parameter estimation for complicated noise environment

The estimation parameter problem for data obtained in complicated noise environment is
considered. The problem solving is based on the method of generalized maximum likelihood with
the use of a superset of cost functions, which gives the opportunity to tune the estimation
method to the current noise environment. The main consideration is given for data model,
having form of a constant, and it is presented by corresponding optimization problems and by
discussion of their solving methods. Simulation examples for estimating the constant value
distorted by additive noise with various anomalies, as well as for estimating Gaussian pulse in
complicated noise environment are presented. These examples demonstrate performance of
proposed approach to parameter estimation.
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