«CucteMHi TexHosorii» 1 (126) 2020 «System technologies»
DOI 10.34185/1562-9945-1-126-2020-12
UDC 004.4

A.V. Kravets, I.V. Ponomarev
THE METHODOLOGY FOR DEVELOPING WEB APPLICATIONS
ON THE PLATFORM ASP.NET CORE

Abstract. The stack of web technologies today is very diverse. When choosing tools for developing
a highly loaded web portal, it is important to pay attention to many factors, for example: modu-
larity, the ability to deploy in the cloud, dependency injection, and so on. The technique of using
the cross-platform .NET Core environment for developing large web portals and web services is
considered.

Keywords: ASP.NET Core, .NET Core, Cross-Platform, MVC, Dependency Injection, Razor, Architec-
ture, Entity Framework.

Formulation of the problem. ASP.NET Core framework works on the
basis of the cross-platform environment .NET Core, which can be deployed on
the main popular operating systems: Windows, Mac OS, Linux. And thus, us-
ing ASP.NET Core it is possible to create cross-platform applications. In addi-
tion to this, Microsoft has created the Kestrel cross-platform web server.

ASP.NET Core is modular and extensible. The framework is built from
a set of relatively independent components [1]. The ASP.NET Core platform
includes an MVC template that controls the form of an ASP.NET web applica-
tion and the interactions between its components.

Purpose of the research. ASP.NET Core provides a huge selection of
tools for implementing web applications. It is necessary to develop a method-
ology for constructing websites using the main features of this framework.

Main part. The main advantages of ASP.NET Core are as follows
(Fig. 1).

* MVC architecture.

The ASP.NET Core framework helps with the development of web ap-
plications that can be more precisely tested, providing a clear separation of

© Kravets A.V., Ponomarev 1.V., 2020

ISSN 1562-9945 (Print) 111
ISSN 2707-7977 (Online)



«CucremHi Texsouorii» 1 (126) 2020 «System technologies»

functionality. At the same time, development, compilation and testing in a
model, view or controller is simplified.

» Functionality of Razor Pages.

Razor Pages is a new ASP.NET Core element that makes web-based
scripting software more productive.

Razor views are HTML templates that contain C # logic, which is used
to process model data to generate dynamic content that responds to changes

in the model.

IMPROVED COLLABOHATION &

CROS5-PLATFORM SUPPORT
MYV C ARCHITECTURE

IN-BUILT DEPENDENCY
INJECTION SUPPORT NET @re

RAZOR PACES

B SUPPORT FOR POPULAR
JavVasCHIPT FRAMEWORRKS

Figure 1 — Key Benefits of ASP.NET Core

 Providing support for popular JavaScript frameworks.

Unlike ASP.NET MVC, the .NET Core framework provides built-in
templates for the two most popular JavaScript frameworks - Angular and Re-
act.

e Improved team development and cross-platform support.

ASP.NET Core is a cross-platform framework. Applications built using
this framework can run on Windows, Linux, and Mac operating systems. De-
velopers can work in different operating systems and at the same time they
can still work together on the same project.

 Native support for dependency injection.

The ASP.NET Core framework provides built-in support for Depend-
ency Injection. This means that you no longer need to use third-party frame-
works such as Ninject or AutoFactor. Dependency Injection is, in fact, a tem-

112 SSN 1562-9945 (Print)
ISSN 2707-7977 (Online)



«CucteMHi TexHosorii» 1 (126) 2020 «System technologies»

plate that can help a developer isolate different parts of their application,
while improving testing capabilities and scalability [1].

ASP.NET Core platform architecture (Fig. 2).

As part of the clean ASP.NET Core architecture, the user interface
layer works with the interfaces that are defined in the application kernel at
compile time, and ideally should not know anything about the types of im-
plementation defined in the infrastructure layer. However, at runtime, these
types of implementation are necessary for the application to run, so they must
exist and be bound to the application kernel interfaces through dependency
injection [3].

Creating an application on ASP.NET Core.

Creating an ASP.NET Core web application using the MVC pattern
consists of the following sequence of steps.

1. Creating the components of an MVC application. In an MVC project,
you must follow the conventions of project structuring and file naming.

Clean Architecture Layers

User Interface

Application Core

Figure 2 — ASP.NET Core Clean Architecture Diagram

1) Designing data models.

The data store for these models is typically MS SQL Server. To work
with MS SQL Server it is recommended to use the Entity Framework ORM
technology. The advantage of the Entity Framework is that it allows you to ab-
stract from the structure of a specific database and conduct all operations
with data through the model. To interact with the database, you must define

the data context. Entity Framework Core uses the Code First approach, which

ISSN 1562-9945 (Print) 113
ISSN 2707-7977 (Online)



«CucremHi Texsouorii» 1 (126) 2020 «System technologies»

first defines the models and context of the data, and then, based on these
models and the context class, the database and all its tables will be created. To
connect to the database, connection parameters are set in the appset-
tings.json file.

2) Creating a controller.

The whole point of the web application development platform is to de-
sign and display dynamic output. In the framework of MVC, the controller’s
work is to prepare the data and transmit it to the presentation, which is re-
sponsible for their visualization in the form of an HTML markup.

3) Creation and visualization of the presentation.

When you create a project, a client-side development package Boot-
strap is installed, which is a convenient CSS infrastructure. The view is styled
after importing the Bootstrap stylesheets by using its CSS classes.

2. Application configuration.

The Program and Startup classes and JSON files are used to configure
the operation of the application, as well as specify the packages on which it
depends. The configuration system allows you to tailor applications to their
environments and manage package dependencies. By default, the Program

class starts application execution:

public class Program

{

public static void Main(string[] args)

{
CreateHostBuilder (args).Build().Run();

}
public static IHostBuilder CreateHostBuilder(
string[] args) =>Host.CreateDefaultBuilder (args)
.ConfigureWebHostDefaults (webBuilder =>

{
webBuilder.UseStartup<Startup>() ;

})

To run an ASP.NET Core application, an IHost object is required within
which the web application is deployed. To create an IHost, the IHostBuilder
object is used. In the default program, the static method CreateHostBuilder

114 SSN 1562-9945 (Print)

ISSN 2707-7977 (Online)



«CucteMHi TexHosorii» 1 (126) 2020 «System technologies»

just creates and configures [HostBuilder. Direct creation of IHostBuilder is
done using the Host.CreateDefaultBuilder (args) method. This method sets
the configuration of the host, application, adds logging providers. Next, the
ConfigureWebHostDefaults() method is called. This method is designed to
configure host parameters.

The application start class is the Startup class, from which the process-
ing of incoming requests will begin.

Dependency injection allows you to make objects interacting in the
application loosely coupled. Objects are interconnected through an abstrac-
tion layer, for example, through interfaces, which makes the entire system
more flexible, more adaptable and expandable. The ConfigureServices()

method is responsible for installing services in the application:

public void ConfigureServices (IServiceCollection services)

{

// Add framework services.
services.AddDbContext<ApplicationDbContext>(
options =>options.UseSqglServer (Configuration
.GetConnectionString ("DefaultConnection")));
services.AddIdentity<ApplicationUser,IdentityRole<Guid>>()
.AddEntityFrameworkStores<ApplicationDbContext, Guid>()
.AddDefaultTokenProviders () ;
services.AddMvc () ;
// Add application services.
services.AddTransient<IEmailSender, AuthMessageSender> (),
services.AddTransient<ISmsSender, AuthMessageSender>() ;

}
After creating the services, ASP.NET calls the Configure() method. The

Configure() method configures the query pipeline, which is a set of compo-
nents (called middleware) used to process incoming HTTP requests and gen-
erate responses to them.

3. Creation and registration of routes.

Routes are created using a lambda expression, passed as an argument
to the UseMvc() configuration method. They are defined using the MapRoute()
extension method, which receives explicitly named arguments name, tem-
plate, and defaults. The name argument specifies the name of the route, the

ISSN 1562-9945 (Print) 115
ISSN 2707-7977 (Online)



«CucremHi Texsouorii» 1 (126) 2020 «System technologies»

template argument is specified in the template argument, and default values
are specified in the defaults argument.

4. Application deployment.

Web applications are increasingly hosted in small and simple contain-
ers on cloud platforms. With Visual Studio, an application can be easily de-
ployed to Azure [2].

Conclusions. Today, ASP.NET Core contains many tools that make it
possible to create a flexible, modular, easily maintained and cross-platform
web application. And constant updates of independent modules and the addi-
tion of new functionality makes this framework a leader in its field of web de-
velopment. A methodology for creating web applications using the main fea-
tures of the ASP.NET Core framework has been developed.

REFERENCES
1. Choosing between .NET Core and .NET Framework for server apps / [Elec-
tronic resource]. - Access mode: https://docs.microsoft.com/en-

us/dotnet/standard/ choosing—core—framework-server.

2. Publish an ASP.NET Core app to Azure with Visual Studio [Electronic re-
source]. — Access mode:
https://docs.microsoft.com/en—-us/aspnet/core/tutorials/ publish-to-azure—
webapp-using-vs?view=aspnetcore-3.1.

3. Common web application architectures Studio [Electronic resource]. — Ac-
cess mode: https://docs.microsoft.com/en—-us/dotnet/architecture/modern-

web-apps—azure/common-web-application—-architectures.

Received 24.01.2020.
Accepted 28.01.2020.

Memoduka po3pobku seb6-0dodamkis Ha nnamgopmi ASP.NET Core

Ha cboeooHiwHuUll OeHb 0118 po3pobKuU BesuKux seb-nopmanis i seb-cepsicis Microsoft
nNponoHye BIOMIHHe piwieHHA - kpoccnaameopmeHHyto cepedy .NET Core. 3anponoHosaHo anzo-
pumm 0ill, sKuli cnpowye po3pobKy 2Hy4yK020, MOOYIbHO20, J1e2KO CyNnpOoBOOIKYBAHO20 1 KPOCC-
naamegopmeHHo20 8e6-000amky.

Memoduka paspabomku seb-npunoxenuii Ha nnamgopme ASP.NET Core

Ha ce200HAWHUL OeHb 014 pa3pabomku KpynHeix Be6-nopmanos u seb-cepsucos Micro-
soft npednazaem omau4Hoe peweHue - kpoccnaamegopmerHyto cpedy .NET Core. [IpednoxeH
aneopumm Oelicmsudi, Komopsll ynpouwsaem pa3pabomky 2ubKo2o, MOOYIbHO20, 1e2KO
CONPoBOXOAemM020 U KpoCCnaamg@opMeHHO20 8e6-NPpUsIOKeHUs.

116 SSN 1562-9945 (Print)

ISSN 2707-7977 (Online)



«CucteMHi TexHosorii» 1 (126) 2020 «System technologies»

KpaBeny Aupapeii BuxkropoBuu - ctymeHT rp. KM-16-1 kadempsr O5BM
IIHenpoB-CKOT0 HALIMOHAJILHOTO YHUBepcuTeTa uMeHn Osnecsd 'oHuapa.
ITonomapeB Vrops BraaMmMmupoBuUy - TOIEHT, K.T.H., JOLIEHT Kadeapsl DBM
IlHenmporeTpOBCKOTO HAlIMOHAIBLHOTO YHUBepcuTeTa um. O. 'oHuUapa.

KpaBeupb AHapiii BikropoBuu - ctymeHT rp. KI-16-1 kabegpu EOM [Him-
POBCBHKOTO HalliOHAJIBHOTO YHiBepcuTeTy imeHi Onecst ['oHuapa.

ITonomapboB Irop BomoauMupoBMY — [OIEHT, K.T.H., OOLEHT Kadeapu
EOM [IHinponeTpOBChKOIO HalliOHAJIbHOTO yHiBepcurtety iM. O. ['oHUapa.

Kraves Andrey - student gr. KI-16-1, Computer Engineering Department,
Oles Honchar Dnipro National University.

Ponomarev Igor - candidate of technical sciences, associate professor of the
department of electronic computers of the faculty of physics electronics and
computer systems of the Oles Honchar Dnipro National University.

ISSN 1562-9945 (Print) 117
ISSN 2707-7977 (Online)



