
«Системні технології» 1 (126) 2020 «System technologies»

SSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

86

DOI 10.34185/1562-9945-1-126-2020-09

УДК 614.2+574/578+004.38

A.A. Litvinov

ON BUSINESS LOGIC LAYER DESIGN AND ARCHITECTURE

Annotation. The work is devoted to business logic layer construction using Clean Archi-

tecture as a foundation. Additional layer of Activities is introduced to make Clean Archi-

tecture more effective for business-process oriented domain modeling, making software

more flexible and robust, testable and maintainable.

Key words: domain-driven design, business logic layer, clean architecture.

Importance and relevance of the research topic. Decade-to-decade

and even year-to-year the complexity of software keeps growing. Business re-

quires more than just an application or even a system meets the needs. To-

day's business requires more flexible and agile, maintainable and testable, ro-

bust and scalable infrastructure able to be an asset. How to design, realize and

maintain such systems? What principles, architecture and patterns should be

used by the developers to tackle that overwhelming complexity? These ques-

tions are stated before developers, managers, scientists.

Undoubtedly, multi-layered architecture becomes a standard for mod-

ern information systems design. According to the separation of concerns prin-

ciple each layer has its own responsibility: user application provides user an

ability to interact with the system, web-service provides an ability of remote

access to the system, data access layer enables the persistence of objects of

the system. And where is the system itself? In short, the system is business

logic layer. That is why business logic layer can be regarded as the heart of

the system, the most important unit, which can be thought as a main proces-

sor interacting with the peripherals/infrastructure represented by other lay-

ers. And consequently, there is a problem of how to build this unit making it

flexible, adoptable, maintainable, testable etc.

 © Litvinov A.A., 2020

«Системні технології» 1 (126) 2020 «System technologies»

ISSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

87

Analysis of recent publications. We can say that Domain-driven design

(DDD) [1], Hexagonal, Onion [2] and Clean architectures [3] are responses to

that question.

DDD (published in 2004 by Eric Evans) provides a number of principles

and patterns allowing developers to tackle the complexity connected to busi-

ness layer design. It declares that the focus point is the domain which should

be examined thoroughly and then the result of such examining is a layer sepa-

rated into two main horizontal parts: application layer (thin layer of services

responsible for orchestrating user actions using domain objects) and domain

layer responsible for representing concepts of the business, information about

the business situation, and business rules. In accordance with Evans domain

layer is the heart of the system. It contains domain events and their handlers,

value objects, entities, aggregates etc. In addition, Evans declares that the ob-

jects should be behaviorally rich, and context bound.

Bounded Context is the central pattern of DDD. It is focused on strate-

gic decomposition dealing with large models and teams. According to this

pattern large models should be divided into different Bounded Contexts with

explicit interrelationships. This keeps the knowledge inside the boundary con-

sistent whilst ignoring the noise from the outside world. It helps to model the

aspects of the problem (within the context) without having to be concerned

with other parts of the business. Secondly, the terminology within the

Bounded Context can have clear definition that accurately describe the prob-

lem whilst different departments across a company usually have slightly dif-

ferent ideas and definitions of similar terms. For example, for a standard sales

company its domain could be divided into Sales, Support and Delivery con-

texts. Of course, the various Bounded Contexts of an application will need to

communicate or share data between each other. That problem resolved using

Context Map which defines how the Contexts should communicate amongst

each other and how data should be shared (i.e. when a business process func-

tions on different Contexts, Context Map is used to coordinate their interac-

tion). There are different patterns used to realize such interactions: shared

kernel, upstream-downstream, conformist, anticorruption layer etc. Evans has

also introduced several conceptions widely used by software programmers

«Системні технології» 1 (126) 2020 «System technologies»

SSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

88

such as: ubiquitous language; identity map, value object, repository, aggre-

gate, event sourcing, specification and other patterns. The scopes of DDD was

defined by Eric Evans as follows. DDD is the best applicable when there is

a lot of business domain complexity and DDD is not suitable for problems

with substantial technical complexity without business domain complexity.

Thus, the main disadvantage of this approach is a complexity in domain

analysis required a lot of time sent by an experienced architects and business

analysts.

Hexagonal (ports and adapters) architecture (documented in 2005 by

Dr. Alistair Cockburn) is a three-layered architecture: application, business

logic(domain) and infrastructure. Originally, there is only one layer responsi-

ble for business logic, but in reality, it is divided into two sub-layers: applica-

tion services and domain. But the architecture doesn’t matter on what is

placed within the domain unit, but mostly concentrated on how that layer in-

teracts the environment. The reason is pointed out by the slogan “allow an

application to equally be driven by users, programs and automated tests, and

to be developed and tested in isolation from its eventual run-time devices and

databases”. The solution provided by Dr. Cockburn based on using the ports

and adapters mechanism. There are two kinds of ports: ports and driven ports.

Driver ports define use case boundary of the application. Actors interact with

the driver ports not with the application itself. Practically, driver ports are the

interfaces that the application offers to the outside world allowing actors in-

teract with the application. Driven ports declare an interface for a functional-

ity, needed by the domain layer for implementing the business logic. Driver

ports define API (application programming interface) of the application and

driven ports define SPI (service provider interface). Adapter is a software

component that allows a technology to interact with a port of the hexagon.

Thus, driver adapter uses a driver port interface converting a specific compo-

nent request into an agnostic request to a driver port.

Onion architecture was inspired by hexagonal and created by Jeffrey

Palermo in 2008 and provides more structural architecture than its predeces-

sor with domain layer placed in the center and a number of layers separated it

from infrastructure. Thus, domain layer could not be connected to infrastruc-

«Системні технології» 1 (126) 2020 «System technologies»

ISSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

89

ture directly. The layers practically used are as follows: application services

layer, domain services layer (i.e. repositories layer), domain layer.

Next one is clean architecture provided in 2012 by Robert C. Martin.

Martin summarized the experience of the above approaches and provided an

architecture based on ports and adapters with two layers of business logic: en-

tities and use cases. Use cases is a layer of services responsible for business

processes modeling and domain entities responsible for request, response,

rules and entities representation.

On the other hand, service-oriented architecture (SOA) [5] is based on

the same principles as domain-driven approaches but used for enterprise in-

tegration systems development. Structurally, services are divided into three

basic layers (instead of two basic layers used in domain-driven approaches):

workflow services (equivalent of business process), task (equivalent to busi-

ness task) and entity (equivalent to business object) services. And this model

is intuitively closer to the models used by the business analysts to describe the

business processes. But SOA principles are focused on how to glue the system

from existed heterogenous components and services, and they could be ap-

plied directly for business logic layer development.

Task definition. Despite the differences among approaches they share

the most important and most valuable common feature that is the principle

aimed to build the software as a model of business which should represent the

business as closer as it is possible. Does the model created according with the

principles of DDD and its descendants satisfy modern business governed by

business processes management approach? When we talk about business

processes, we also talk about business functions and events, business objects

and goals, outcomes and resources. Do all those abstractions can be repre-

sented using DDD effectively? It seems, does not.

Main part. To analyze the problems of provided approaches we should

first understand what is the domain to which the infrastructure (i.e. informa-

tion system) is applied. Since 1990 most of the leading business companies

work using business process management model approach. It was provided by

Dr. Davenport in earlier 1990s [4] and focused on the process, which is a struc-

tured, defined and measured set of activities designed to produce a specific

«Системні технології» 1 (126) 2020 «System technologies»

SSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

90

output valuable for a customer or market. Business process management life

cycle starts with design stage, in which the activities are analyzed and “as is”

models are built. Despite the differences in approaches two basic forms re-

main the same: building the catalogue of business functions and con-

structing business processes as compositions of business functions.

Business functions connected to different types of resources, and business

processes are triggered by business events producing an output (BPMN 2.0

used to describe business process). Thus, according to R. Martin mapping

business model to software results in building use cases reflected user-system

interaction scenarios. Of course, such mapping is focused primarily on infor-

mation flows and objects. We can say that naturally business function is

mapped to use case (i.e. class of application layer). For example, for a simple

process shown in Fig.1 we will get the following sequence of use cases: Place

Order, Identify Customer, Register Customer Account, Notify on Delivery, Pay

for Delivered Goods. Process engages several departments.

But if we take a look at use cases, we will see that whilst the business

functions are atomic from business point of view, use cases are not atomic

from software development perspective. It is obvious, because the core of use

case is a bunch of scenarios: basic one and alternatives [6]. And getting busi-

ness functions mapped we don’t get atomic activities catalogue for software

development, i.e. set of atomic actions involved in use case scenarios. And the

lack of such things results in ineffective representations of use cases, betting

on domain objects rather than atomic actions. We can say that use cases are

composed of activities in such a way as business process composed of business

functions. And in a way we can think about business functions as building

blocks of the processes and similar activities shared among the processes, we

can think about the activities involved in use cases. But all the provided ap-

proaches don’t have activities blocks separated in a layer, smearing them

along use cases and domain layers.

«Системні технології» 1 (126) 2020 «System technologies»

ISSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

91

O
rd
e
ri
n
g
 P
ro
c
e
s
s

C
o
m
p
a
n
y

C
u
s
to
m
e
r
S
e
rv
ic
e

D
e
li
v
e
ry
 S
e
rv
ic
e

M
a
n
a
g
e
r

W
ro
k
e
r

C
u
s
to
m
e
r

Identi fy Customer

Customer

exists?

Register new

Customer Account

Forward Order

Arrange Delivery

Deliver

End
Order recievedStart

Place order

Receive Order

Pay

Receive Payment

No

Figure 1 – Simple business process in BPMN 2.0 notation

And that is the reason why we introduce an additional layer to two ba-

sic layers proposed by R. Martin in Clean Architecture, the layer of Activities

(i.e. layer of Activities). The layer of Activities depends on infrastructure

layer, because, as it was mentioned above, the functions naturally depend on

resources provided by the infrastructure. Thus, use cases layer remains thin as

it was suggested by Eric Evans, but is not realized in Clean Architecture (use

cases depend on infrastructure such as repositories etc.). The model of soft-

ware becomes more comprehensible, making the software more flexible and

robust, testable and maintainable. The structure of business logic layer is

shown in Fig. 2.

UseCase Activity Domain

Rule

Entity

Response

RequestBusiness layer API

Infrastructure (Resources) Layer

Business logic layer

Service Layer

Figure 2 – The structure of business logic layer

«Системні технології» 1 (126) 2020 «System technologies»

SSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

92

Activities depend on domain objects and business rules. From that

point of view, domain objects can be regarded as anemic domain objects. It is

known subject of discussion and there are several opinions, including Fowler’s

“the fundamental horror of this anti-pattern is that it's so contrary to the ba-

sic idea of object-oriented design; which is to combine data and process to-

gether” and his proposition to place the logic (validations, calculations, busi-

ness rules) in domain objects (e.g. Book, Student). But if we try to apply an

analogy of “processes-functions” to use cases, it seems that we will not find in

business model any full-blooded business objects interacting with infrastruc-

ture.

When we try to make activity classes, we face a huge amount of similar

logic shared among these activities and to exclude such complexity we need a

kind of normalization. The way we propose is to make a set of basic generic

activities which can be further used as a foundation for business-oriented ac-

tivities creation, significantly simplifying their definition. Simply speaking,

the most of business-oriented activities are inherited from the generic ones.

Activity factory separates the layer from the layer of Use cases, allowing to

create only business-oriented activities used by use case objects. We think it

should be rather flexible to make the layer of use cases depended on activity

factory interface then a hard-coded realization, allowing to use different reali-

zations of activities (Fig. 3).

CheckIfExistsActivity

<<Interface>>

IActivityFactory

ActivityFactory

<<Interface>>

IRepositoryFactory

ChangeEntityFieldActivity

ChangeEntityFieldsActivity

GetEntityByIdActivity

RemoveEntityActivity

ValidateRequestActivity

CreateEntityActivity

GetEntityCollectionActivity

CheckIfBookExistsActivity

CheckIfBookAlreadyExistsActivity

CreateBookEntityActivity

GetBookByIdActivity

GetBookCollectionActivity

RemoveBookActivity

ValidateRegisterBookRequestActivity

...

Real activities set Generic activities set

Figure 3 – Activity layer structure

«Системні технології» 1 (126) 2020 «System technologies»

ISSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

93

Activities depend on resources such as repositories and external ser-

vices. It is obvious that such dependencies should be resolved by dependency

injection according to SOLID principles. A typical structure of activities is

shown in Fig. 4. Use case factory creates realizations of use cases, injecting

necessary activities provided by Activity factory. Obviously, use case factory

depends on Activity factory realization. Typical use case structure is shown in

Fig. 5.

T

ValidateRequestActivity ValidateRegisterBookRequestActivity
<<Interface>>

IValidateRequestPolicy

T

CreateEntityActivity CreateBookEntityActivity
<<Interface>>

T

IRepository

Figure 4 – Typical structure of activities

RegisterBookUseCase

IValidateRegisterBookRequestActivity

ICheckIfBookAlreadyExistsActivity

ICheckIfDeliveryExistsActivity

ICreateBookActivity

GetBookCollectionUseCase

WriteOffBookUseCase

FindBookUseCase

...

...

IOutputPort
T

Figure 5 – Typical structure of use-case

An example of use case execution method is shown in Listing 1. It is

notable that the request object (RegisterBookRequest) is walking through the

bunch of activities to the point when a response object is constructed, using

partial results obtained during activities execution, and then passed to the

outputPort sink according to ports/adapters pattern suggested by Dr. Cock-

burn. Thus, use case plays a role of activities orchestrator (i.e. analog of work-

flow service in SOA) and it’s not directly depended on infrastructure compo-

nents such as repositories.

«Системні технології» 1 (126) 2020 «System technologies»

SSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

94

Listing 1
@Override

public void execute(RegisterBookRequest registerBookRequest)

 throws Exception

{

this.validateRegisterBookRequestActivity.run(registerBookRequest);

this.checkIfBookAlreadyExistsActivity.run(registerBookRequest);

this.checkIfDeliveryExistsActivity

.run(registerBookRequest.getDeliveryId());

int id = this.createBookEntityActivity.run(registerBookRequest);

return outputPort.Post(new RegisterBookResponse(id));

}

Such computing description can be easily transformed into asynchro-

nous variant using pipeline pattern. Construction of such pipeline will be

based on wrapping the activities in pipeline stages. Simple variant of the pipe-

line is shown in Fig.6. Each stage is composed of queue and activity elements

and able to interact with the next stage by passing request and response ob-

jects to its source.

Validate request CheckIfExists Post response

Stage

Request Notification
Figure 6 – Pipeline structure of use-case

Of course, use cases can have several conditional branches and loops

that will be transformed into additional activities-stages with a number of

outputs. We can think of such elements as resolvers responsible for reasoning

which path to go. Resolvers are opposite to executors responsible only for per-

forming actions. At first, it looks like providing complex solution to simple

problems. But if we look at the solution with new eyes, we will see the solu-

tion becomes more comprehensible and structured, flexible and testable. The

most important is that use cases become responsible only for activities or-

chestration, not depending on infrastructure, which make them very flexible.

Summary. The work is devoted to business logic layer construction

using domain-driven design approach. Additional layer of Activities is pro-

vided to make Clean Architecture more effective for business-process oriented

domain modeling. In the result the model of software becomes more compre-

«Системні технології» 1 (126) 2020 «System technologies»

ISSN 1562-9945 (Print)
ISSN 2707-7977 (Online)

95

hensible, allowing to make software more flexible and robust, testable and

maintainable.

REFERENCES

1. Eric Evans. “Domain-Driven Design: Tackling Complexity in the Heart of

Software”. 2003

2. J.Palermo. The Onion Architecture : part 1.

https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/

3. Robert C. Martin. Clean Architecture. A Craftsman’s Guide to Software

Structure and Design. 2018.

4. Davenport Thomas H. «Process Innovation: Reengineering Work through

Information Technology» Published October 1st 1992 by Harvard Business Re-

view Press. – 352 р.

5. Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and De-

sign. Prentice Hall; 2016.

6. Cockburn A. Writing Effective Use Cases. / A. Cockburn – Addison-Wesley

Professional. – 2000. – 304 p.
Received 22.01.2020.
Accepted 27.01.2020.

Розробка та архітектура шару бізнес логіки

В роботі пропонується додати новий рівень Заходів (англ. activities) до двох рівневі
моделі бізнес-логіки запропонованої в Clean Architecture. Даний рівень дозволяє зробити
шар бізнес-логіки більш гнучким та стійким, полегшує супровід та тестування.

Разработка и архитектура слоя бизнес логики

В работе предлагается добавить новый уровень Мероприятий (англ. activities) к
двухуровневой модели бизнес-логики, предложенной в Clean Architecture. Данный уровень
позволяет сделать слой бизнес-логики более гибким и устойчивым, облегчает сопровож-
дение и тестирование.

Литвинов Александр Анатольевич - доцент, к.т.н., доцент кафедры

электронных вычислительных машин Днепровского национального уни-

верситета имени Олеся Гончара.

Литвинов Олександр Анатолійович – доцент, к.т.н., доцент кафедри

електронних обчислювальних машин Дніпровського національного уні-

верситету імені Олеся Гончара.

Litvinov Alexander Anatolievich — Associate Professor of Computer Sys-

tems Engineering Department of the Oles Honchar Dnipro National

University.

