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DETECTING FLAT ROOF DEFECTS WITH MACHINE LEARNING
AND DEEP LEARNING TECHNIQUES

Anotation. Deep learning has emerged as a transformative approach for detecting structural
damage and deformations, particularly for flat roofs and large-scale infrastructure. This arti-
cle synthesizes recent progress in applying convolutional neural networks (CNNs), segmenta-
tion models, object detectors (YOLO, Faster R-CNN), and autoencoders for unsupervised
anomaly detection. Drones (UAVSs), thermal imaging, and vibration sensing all contribute
critical data. By training on images or signals indicative of healthy vs. damaged conditions,
deep models can locate cracks, spalling, missing fasteners, or stiffness loss at high speed and
with impressive accuracy - often above 85%. A review of more than 300 publications indi-
cates that remote inspection with Al can drastically reduce manual labor and improve the
consistency of damage identification, even in hazardous or inaccessible areas. A summary
table compares deep learning effectiveness across beams, walls, decks, roofs, and other struc-
tural components. Real-world deployments on bridges, high-rise facades, and post-disaster
zones confirm that deep learning, coupled with UAV-based inspections, can accelerate
maintenance workflows, detect subtle defects, and reduce safety risks. Ongoing challenges
include data scarcity for rare failure modes, generalizing models to new environments, and
the integration of physics-based reasoning. Recommendations for future research involve fus-
ing multispectral data, automating calibration of deep models, and embedding Al in digital
twins for continuous structural health monitoring.

Key words: deep learning, machine learning, flat roof defects, structural damage, UAV, com-
puter vision, CNN, semantic segmentation, object detection, autoencoders

Statement of the problem. Structural integrity is vital for safety and longevity. Flat
roofs, in particular, are vulnerable to cracks, water infiltration, and other failures that may re-
main unnoticed in manual inspections. Conventional inspection methods can be cumbersome,
time-consuming, and risky for inspectors. This creates a pressing need for automated, intelli-
gent damage detection solutions. Recent technological progress especially in UAVs, camera
hardware, and Al - has enabled large volumes of image or sensor data to be gathered rapidly.
Yet this deluge of data poses its own challenge: manual review is impractical. Deep learning
provides a way to handle these large datasets by learning patterns of healthy vs. damaged
states, thus flagging potential defects with high accuracy.

Analysis of the latest research and publications. Deep Learning Domination. An ex-
tensive body of work shows that CNNs are the most widely adopted approach for structural
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defect detection [1]-[3]. They excel at identifying cracks, surface spalling, and other damage
forms from images. Researchers worldwide including teams in the USA, Europe, Ukraing,
and China have refined CNN-based models (e.g., ResNet, VGG) or segmentation architec-
tures (U-Net, Mask R-CNN, YOLO) to accurately pinpoint cracks in concrete, masonry, or
asphalt [4], [5]. A 2023 review [1] covering 337 papers found that 60% rely on CNN-based
image analysis, with crack detection the most common application (30% of studies).

Extended Architectures and Unsupervised Methods. To capture more complex phenom-
ena, newer models integrate transformers into U-Net, achieving 4-6% gains in segmentation
metrics [6]. Some authors employ unsupervised autoencoders that learn a “healthy” baseline
of vibrations or thermal images, then flag anomalies if reconstruction error spikes [7]. These
methods reduce dependency on labeled damage data and can detect unseen defect types.

Role of Multimodal Sensing. Studies increasingly incorporate thermal infrared (IR) im-
aging to uncover hidden defects such as water intrusion or subsurface delamination in flat
roofs. UAV-based IR surveys can detect temperature irregularities that correspond to moisture
pockets [8]. Laser scanning or 3D LiDAR further aids in capturing geometric deformations.
Multimodal fusion-combining RGB, IR, vibration data improves detection accuracy and can
differentiate superficial discoloration from genuine cracks or moisture infiltration [9].

Real-World Applications. Pilot projects confirm that deep learning can reduce labor and
cost. Case studies from the USA indicate an Al-assisted inspection can be 50-70% cheaper
than rope-access methods for tall facades or rooftops [10]. Europe and East Asia have also
tested UAV-based deep learning to identify post-disaster building damage, which is critical
for emergency response [3]. In Ukraine, deep models trained on pre- vs. post-conflict imagery
facilitate rapid mapping of war damage [11]. These validations highlight the global ac-
ceptance of Al-driven inspection, excluding few regions that lack open publication or data-
sharing.

Research Objective. This article aims to systematically review how deep learning can
detect flat roof defects alongside general structural damage using modern sensing platforms.
We target five goals:

— Survey CNN-based classification, segmentation networks (U-Net, Mask R-CNN),
object detectors (YOLO, Faster R-CNN), and autoencoders.

— Highlight data sources (drone imagery, IR, vibration) and preprocessing steps to pre-
pare them for deep learning.

— Present a comparison table that synthesizes detection accuracy across structural ele-
ments, including flat roofs.

— Describe practical case studies showing how UAV-based Al solutions drastically
shorten inspection times and reduce costs.

— Discuss future trends: physics-based digital twins, hybrid Al, and regulatory frame-
works to ensure reliability.
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Presentation of the Main Research Material. Deep Learning Methods for Damage
Detection. Convolutional Neural Networks (CNNs). CNNs have proven extremely effective at
discerning cracks or corrosion directly from raw images. Classic approaches use patch-level
classification (crack vs. no crack), while modern methods provide heatmaps or bounding box-
es around damage. A ResNet-18 architecture, for example, might scan overhead photos of a
roof, highlighting areas with potential membrane perforation. CNN performance depends
heavily on image resolution and training data quality; small cracks (<0.3 mm) may go unde-
tected if the camera or vantage point is insufficient.

Semantic Segmentation: U-Net Variants. Pixel-level damage identification is especially
relevant for roofing systems, where water intrusion often occurs at small cracks or seam fail-
ures. Segmentation networks like U-Net and DeepLab can outline precise crack boundaries.
Researchers incorporate improved skip connections or multi-scale context (e.g., U-Net++ or
TransUNet) [6] Figure 1.

Raw image

U-Net

DeepLab V3
(MobileNet V3-based)

DeepLab V3
(ResNet 50-based)

TransUNet

Figure 1 — Example comparison of crack segmentation outputs from different deep learning
models on a concrete surface: a — raw UAV images of a bridge column with cracks; b — pre-
dicted crack masks using the U-Net model; ¢ — predicted crack masks using the DeepLab V3
(MobileNet VV3) model; d — predicted crack masks using the DeepLab V3 (ResNet 50) model;
e — predicted crack masks using the TransUNet model. Red boxes indicate areas where some
models missed or erroneously detected cracks
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Object Detection: YOLO and Faster R-CNN. Large-scale defects such as spalled areas
or missing roof shingles can be detected as “objects.” YOLO excels in real-time performance,
allowing drones to stream video that is analyzed on-the-fly [4]. Two-stage detectors (Faster
R-CNN) often yield slightly higher accuracy but are slower. For high-stakes tasks—e.g., final
verification of severe roof damage—engineers might accept the computational cost for an ex-
tra margin of accuracy.

Autoencoders for Anomaly Detection. Autoencoders learn normal patterns from unla-
beled data; deviations in reconstruction error can signal hidden damage, e.g., moisture infiltra-
tion beneath membranes or rebar corrosion in the roof slab. This approach helps when labeled
“defect” data is scarce [7]. For instance, if a structural deck’s vibration signature shifts due to
partial delamination, the autoencoder flags a higher anomaly score—even if the surface looks
intact.

Data Sources and Inspection Tools. Drones (UAVSs) are pivotal for surveying large flat
roofs without requiring scaffolding or harnesses. Equipping drones with RGB and IR cameras
enables the capture of complementary data: visible cracks vs. hidden moisture indicated by
temperature variance [8]. Meanwhile, vibration sensors placed at roof supports or beams can
detect changes in stiffness if a support girder is compromised. Preprocessing steps (stitching
overlapping UAV photos into an orthomosaic) are crucial for large roofs. IR images must be
calibrated to account for emissivity differences. Tools such as semi-automatic annotation can
speed up dataset creation by suggesting crack outlines, which inspectors confirm.

Real-World Applications and Case Studies. Roof Inspections. Frequent roof inspections
catch issues like ponding water, membrane punctures, or seam failures early. A UAV-based
system in California used a YOLOvV5 model on both visual and thermal images, achieving
~90% accuracy in identifying heat anomalies correlating with water infiltration [8]. Another
pilot in Denmark used a tethered drone to scan entire industrial rooftops, detecting cracks and
energy losses in near real-time. Bridges, Facades, and Post-Disaster Surveys. Although the
focus is flat roofs, similar techniques apply to other structures. Bridges incorporate IR and
optical cameras to find deck delamination or rebar exposure. Facade inspections in dense ur-
ban areas rely on UAVs or robotic systems to detect cracks in vertical surfaces. Post-disaster
efforts (earthquakes, conflicts) use satellite or aerial images with deep learning to classify
building damage severity across entire city blocks [3], [11].

Summary Table of Model Performance. Below is a condensed table highlighting re-
sults from various studies on different structural components, including roofs table 1. Accura-
cy ranges typically span 80-95%, with the highest results in well-controlled conditions. In
practice, performance depends on lighting, image resolution, and training dataset diversity.
Specialized tasks (cracks on rooftop membranes) may see slightly lower recall, demanding
more advanced or higher-resolution imaging solutions.
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Table 1
Deep Learning Effectiveness Across Structural Components
Example DL Reported
Structural Component | Common Damage P P
Approach Performance
. . YOLO for missin i
Roofs (flat or Leaks, missing shin- . g ~85-90% accuracy in
. shingles, IR-based
pitched) gles, or cracks . real UAV tests [8]
crack detection
U-Net for cracks, au- .
. . ~95% precision on
Beams & Girders Cracks, deflection toencoder for anoma- ..
. visible cracks [1]
ly detection
Mask R-CNN
. ’ 90-96% accuracy in
Walls/Facades Cracks, spalling YOLO, TransUNet . ’ . y
i multiple studies [6]
for segmentation
Thermal imaging, .
. i . 80% detection of
Foundations Settlement, moisture | GPR, LSTM on tilt ° )
subsurface voids
Sensors
L IR-based CNN,
. Delamination, . ~90-95% for cracks
Bridge Decks YOLO for real-time
potholes . or delams [2], [4]
detection

Workflow Integration. Workflow involves:

1. Data Collection: UAV captures overhead shots of the roof, possibly with IR.

2. Preprocessing: Stitch images into an orthomosaic, correct lens distortions, label any
known defects.

3. Deep Learning Inference: Run object detectors or segmentation to highlight possible
damage.

4. Post-Processing: Merge overlapping detections, measure crack length or area, and
create a user-friendly map.

5. Verification: Inspectors confirm or dismiss Al findings, refining future model per-
formance.

Challenges and Future Directions. Data Scarcity: Some critical roof failure modes
(e.g., severe structural collapse) are thankfully rare, meaning few labeled examples. Genera-
tive Adversarial Networks (GANSs) or synthetic data can help. Generalization: A model
trained on typical commercial roofs might fail on older, historically significant structures with
different materials. Transfer learning and domain adaptation remain vital. Integration with
Physics: Combining Al with structural models (digital twins) can differentiate real damage
from benign anomalies caused by thermal expansion or occupant load changes. Regulatory
Acceptance: Standards for Al-based inspection remain in flux. Liability issues and guidelines
for verifying algorithmic results need further clarification.

Conclusions. Deep learning is revolutionizing the detection of flat roof defects and
broader structural damage, enabling cost-effective, frequent, and safer inspections. Across the
literature, CNNs dominate for image-based analysis, while segmentation networks excel at
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mapping cracks or spalls. Object detectors (YOLO) provide fast bounding-box detection of
missing shingles or open seams, and autoencoders enable anomaly detection without large-
labeled datasets. Real-world pilots consistently show 80-95% detection accuracy, with some
controlled-lab experiments exceeding 95%. The rise of drones and multimodal sensing has
amplified AI’s impact. Thermal imaging reveals hidden moisture infiltration, vibration sen-
sors detect stiffness changes, and LiDAR captures geometric deformation. Fusing these data
streams can mitigate false positives. Meanwhile, the cost benefits—reducing manual labor-
drive commercial adoption, from rooftop insurance surveys to post-disaster damage mapping.
Challenges persist around model generalization, limited training data for rare failures, and ro-
bust interpretability to ensure safety-critical decisions. Nonetheless, the overarching trend is
clear: advanced Al frameworks will continue to integrate into structural health monitoring,
bridging data collection and engineering analysis to keep buildings, bridges, and roofs safer,
longer. Future progress will likely focus on digital twin integration, improved domain adapta-
tion techniques, and standardized guidelines for Al-based inspections.
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Busaenenns oeghexmis niockux nokpieenp 3a 00nomozor0
Memooie MAWUHHOZ0 HAGYAHHA MA 2TUOOKO20 HAGYAHHS

I'ntuboke HaguaHHsA cMano NPOPUBHUM NIOXO0OM OO0 GUABNIEHHA KOHCMPYKMUBHUX NOUL-
K0OJiceHb 1 Oeghopmayill, 30Kpema O/ NIOCKUX NOKPIBelb mMa SelUKOMAcCUmaoroi ingpa-
cmpykmypu. Y yiti cmammi y3a2anibHeHo 0CMAaHHI 00CACHEHHS 8 3ACMOCYBAHHI 320PMKOBUX
netiponnux mepexc (CNN), mooeneil ceemenmayii, oemexkmopie 060 ’ekmie (YOLO, Faster R-
CNN) ma asmoxodepie 015 Oe3naznioHo2o susasieHus anomaniu. Jponu (BILJIA), mennogi-
3iliHa 3UoMKa ma eibpayiiine 30HOY8AHHS 3a0e3neuyioms KPUMUYHO 8aXNCIUGl 0aHi. 3a60aKu
HABYAHHIO HA 300pAdCEHHAX abO CUSHANAX, AKI 8i000padcaomv HOPMAlbHUU AO0 NOWKO-
Ooicenull cmam, mMooeni 2IubOK020 HABUAHHS MOXCYMb UWEUOKO Ul MOYHO SUABIAMU MPIYUHU,
siowapy8anHs Oemony, i0CYmHi KpinjieHHs abo empamy HcoOpPCmKOCmi — 4acmo 3 mouHic-
mto nonaod 85 %. Ozna0 nonad 300 naykoeux nybaikayit ciouums, wo OUCMAHYILHA IHCNEeK-
yist 3a 0onomoeoro LI mooce cymmeso smerwumu 006cse pyyHoi npayi ma nOKpawumu cma-
OinvHicmy i0eHmugikayii yuKoodceHb HA8iMb y Hebe3neuHux abo 8ancKoO0OCMYNHUX 30HAX.
Iliocymkosa mabauys nopieHioe epekmuHicms 21ub0K020 HasuanHs Ol 6ANOK, CMIH, nepe-
Kpummie, NOKpigelb ma I[HWUX KOHCMPYKMUSHUX elemenmis. Peanvni npuxnadu enposa-
0diceHHs Ha mocmax, gacaoax eucomuux 6yoigens i y 30HAX NICAA CMUXIUHUX TUX niomeep-
0oicyroms, wo 2nuboKe HABYaHHs y NO€OHaHHI 3 iHcnekyieio BIIJIA 30amue npuckopumu 00-
CIIY208YBAHHSA, SUABUMU NPUX0BAHT Oehexmu ma 3meHuwumu puzuku onsa oesnexku. Cepeo ak-
MYAIbHUX BUKTUKIE — Hecmaua OaHux O0Jis PiOKICHUX MUNi8 NOWKOONHCEHb, CKIAOHICMb V3a-
2abHeH s MoOelell Ha HO8l YMOo8U ma nompeda y no€oOHauti 3 Qgizuunumu mooensimu. Cepeo
pexomeHoayitl 051 NOOANLUUX OOCNIONHCEHb — 00 €OHAHHA MYTbMUCNEKMPALIbHUX OAHUX,
asmomamu3zayisa Kaniopysauns mooeneu ma inmeepayis L1 6 yughposi ogitinuxu 051 nocmiti-
HO20 MOHIMOPUHSY CIMAHY KOHCMPYKYIU.

Knouoei cnosa: enuboke naguanms, mawuntne Hag4aHus, oeghekmu nioCKux noKpigenw,
nowkoocents koncmpykyiu, BIIJIA, komn romepnuii 3ip, CNN, cemanmuuna cecmenmayis,
8UsABNIEHHS 00 '€KMIB, ABMOKOOePU.

I'puropoBuy Mukura CeprilioBuu — 3100yBau YkpaiHcbkoro JlepxaBHoro YHiBepcUTETY
Hayku 1 Texnomnoriit, HHI «[IpunninpoBceka Jlep>kaBHa AkaaeMis byaiBHunTBa Ta ApXiTek-
Typu», kadenpa TexHosnorii byaiBenbHOro BUpOOHHIITBA.

Hryhorovych Mykyta — applicant of Ukrainian State University of Technologies and Sci-
ence, ESI “Prydniprovska State Academy of Civil Engineering and Architecture”,
ORCID ID: 0000-0002-5539-7493.

ISSN 1562-9945 (Print) 49
ISSN 2707-7977 (Online)



