
«Системні технології» 3 (158) 2025 «System technologies» 

 

ISSN 1562-9945 (Print) 

ISSN 2707-7977 (Online) 

74 

DOI 10.34185/1562-9945-3-158-2025-08 

UDC 004.8:62-50 

G. Shvachych, P. Shcherbyna, O. Kabachenko, I. Olishevskyi, P. Ishchuk

 

DEVELOPMENT AND EXPLORATION OF PARALLEL TECHNOLOGIES  

IN STOCHASTIC PROGRAMMING TASKS 

 

Abstract. This research examines parallel technologies for modeling tasks using the Monte-

Carlo method. The actuality of these studies is explained by the fact that the Monte-Carlo 

method has had and continues to have a significant impact on the development of computa-

tional mathematics. It is shown that the main essence of the method lies in the random simula-

tion of a large number of scenarios and statistical processing of the results, which explains 

the inherent possibility of its parallelization. It is noted that since individual iterations of the 

Monte-Carlo method are typically independent of one another, they can be easily distributed 

among several threads or nodes of a cluster system. This makes the method ideal for parallel 

and distributed computing. The main aim of the research is to highlight  peculiarities of par-

allelizing computations in solving a wide range of applied tasks. Calculation schemes that 

ensure increased performance and speed are presented. The effectiveness of the proposed ap-

proach is illustrated by studies and graphical interpretations of convergence and approxima-

tion of the developed approach.  

Keywords: parallel computing, stochastic modeling, random process, method convergence, 

approximation, computation scheme. 

 

Problem statement. The Monte-Carlo method has significantly influenced and contin-

ues to influence on the development of computational mathematics methods, particularly nu-

merical integration methods. In solving many problems, it successfully combines with other 

computational methods, complementing them.  

The essence of the Monte-Carlo method is as follows. Let it be required to find the val-

ue а of a certain studied value. To do this, a random variable X is chosen, whose mathemati-

cal expectation is equal to а, i.e. М(Х) = а. 

Practically, this is done as follows: n experiments are conducted, resulting in n possible 

values of Х; their arithmetic mean is calculated: 
n

x
x i
 , and x  is considered as the esti-

mate (approximate value) a* of the desired number a, that is, x*a~a  .  

Since the Monte-Carlo method requires  large number of experiments, it is often re-

ferred to as the method of statistical trials. The theory of this method shows how to choose the 

most appropriate random variable Х and find its possible values. In particular, methods for 

reducing the dispersion of the involved random variables are being developed, which leads to 

                                              


© Shvachych G., Shcherbyna P., Kabachenko O., Olishevskyi I., Ishchuk P., 2025 



«Системні технології» 3 (158) 2025 «System technologies» 

ISSN 1562-9945 (Print) 

ISSN 2707-7977 (Online) 
75 

a decrease in the error that occurs when replacing the sought mathematical expectation а with 

its estimate, а*. 

The most important characteristic of the method is the estimation of its error. Since this 

is of significant importance, let's consider some approaches to error estimation for the Monte-

Carlo method to understand its essence.  

Let n independent trials (n possible values of X were experimentally implemented) be 

conducted to obtain the estimate a* of the mathematical expectation а of the random variable 

Х, and let the sample mean x  be found based on these trials and accepted as the desired esti-

mate when xa*  . It is clear that in the case of repeating the experiment, different possible 

values of Х will be obtained, leading to different mean values and, consequently, a different 

estimate a*. Hence, it follows that obtaining an exact estimate of the mathematical expecta-

tion is impossible. Naturally, the question arises about the magnitude of the permissible error. 

For clarity, let's limit ourselves to finding only the upper bound  of the permissible error with 

a given probability (reliability) , namely:   )aX(P . 

It is worth noting that the upper bound of the error δ, which we are interested in, is noth-

ing other than the "accuracy of the estimate" of the mathematical expectation based on the 

sample mean value in confidence intervals. Let's consider the following three cases. 

1. The random variable Х is normally distributed, and its standard deviation σ is known. 

In this case, with confidence γ, the upper bound of the error is 

                                             
t

n

 



 ,                                                                           (1) 

where n is the number of trials (experimental values of X); t is the argument value of the La-

place function at which ( )t   ;  is the known standard deviation of the random variable 

Х. 

2. The random variable Х is normally distributed, and its standard deviation  is un-

known.  

In this case, the upper bound of the error with reliability γ is determined as follows: 

                                             
n

St 



 ,                                                                       (2) 

where n is the number of trials; S is the "corrected" standard deviation; t  is the Student’s t -

statistic. 

3. The random variable X is distributed according to a law that differs from the normal 

distribution. 

Under this condition, with a sufficiently large number of trials (n > 30) and reliability 

approximately equal to γ, the upper bound of the error can be calculated using formula (1), if 

the standard deviation  of the random variable X is known; if the value of σ is unknown, its 

estimate S – the "corrected" standard deviation — can be substituted into formula (1), or for-

mula (2) can be used. 



«Системні технології» 3 (158) 2025 «System technologies» 

 

ISSN 1562-9945 (Print) 

ISSN 2707-7977 (Online) 

76 

Let's emphasize, that the larger the value of n, the smaller the difference between the re-

sults, given by both formulas. This is explained by the fact that as n , the Student's dis-

tribution approaches the normal distribution. 

From relations (1) and (2), it follows that the error of the Monte-Carlo method is in-

versely proportional to the square root of the number of trials. This characteristic will be used 

as the basis for further study of this method's error. 

From the above description, it follows that the Monte-Carlo method is closely related to 

the tasks of probability theory, mathematical statistics, and computational mathematics. When 

considering the task of modeling random variables (especially uniformly distributed ones), 

number theory methods also play an important role in this case. 

The given statements show that the convergence of the Monte-Carlo method is conver-

gence in probability. This circumstance should hardly be considered disadvantage, as proba-

bilistic methods largely justify themselves in practical applications. As for problems that have 

a probabilistic description, the convergence in probability is, to some extent, even natural 

when solving them. 

Analysis of recent research and publications. Among numerical methods in mathe-

matical calculations, there has been a recent resurgence of Monte-Carlo methods [1–4]. This 

name refers to a group of numerical methods based on obtaining a large number of 

realizations of a stochastic process, which is constructed in such  way that its probabilistic 

characteristics coincide with the corresponding parameters of the problem at hand. Monte-

Carlo methods are used for solving problems in industries of physics, mathematics, econom-

ics, optimization, control theory, and others. Fundamental works on Monte-Carlo methods 

appeared in 1955–1956. Since then, many scientific works have been written, describing the 

application of this method [5-10]. Even a superficial review of the titles of these works allows 

one to conclude that the Monte-Carlo method is applicable for solving practical problems in 

various fields of science and engineering. 

The distinctive feature of Monte-Carlo methods is their experimental nature. For clarity, 

we will refer to a procedure as a Monte-Carlo method, if it involves the use of statistical sam-

pling techniques for an approximate solution given mathematical or physical problem. 

Monte-Carlo methods have had a significant impact on the development of computa-

tional mathematics and continue to do so, while in solving certain classes of problems, they 

successfully combine with other computational methods and complement them. Their applica-

tion is particularly justified for problems that allow a probabilistic theoretical description. 

This is explained both by the naturalness of obtaining a response with a certain given proba-

bility in problems with probabilistic content, and by the significant simplification of the solu-

tion procedure. Currently, there are statistical methods for solving certain classes of partial 

differential equations, integral equations, eigenvalue problems, and systems of linear algebra-

ic equations. 

Among other computational methods, the Monte-Carlo method stands out for its sim-

plicity and versatility. Slow convergence is a significant drawback of the method, but this ar-

ticle will describe its computational modifications, that ensure high convergence rates under 



«Системні технології» 3 (158) 2025 «System technologies» 

ISSN 1562-9945 (Print) 

ISSN 2707-7977 (Online) 
77 

certain assumptions. However, the computational procedure becomes more complex, bringing 

it closer to other procedures in computational mathematics. The convergence of the Monte-

Carlo method is probabilistic convergence. This fact should hardly be considered a disad-

vantage, as probabilistic methods are often highly effective in practical applications. The con-

vergence of the Monte-Carlo method is probabilistic convergence. This circumstance should 

hardly be considered disadvantage, as probabilistic methods largely justify themselves in 

practical applications. As for problems with probabilistic descriptions, when solving them, 

convergence in probability is, to some extent, even natural. This explains the inherent possi-

bility of parallelizing the method. Since individual Monte-Carlo iterations are typically inde-

pendent of each other, they can be easily distributed across multiple threads or nodes in a 

cluster system. This makes the method ideal for parallel and distributed calculations. 

Finally, it should be noted that the accuracy of the method's calculations heavily de-

pends on the quality of the pseudo-random number generator used, while the speed of calcula-

tions is determined by the function describing the analyzed process and, of course, the per-

formance of the "compute unit" itself. Today, the clock speed of modern processors has sur-

passed the GHz threshold, and the amount of random access memory in personal computers is 

measured in gigabytes. Considering that the relevant class of tasks will be processed using 

parallel computing, the performance of the "compute unit" is no longer a limiting factor (but 

rather a determining one) for the application of power-sensitive numerical algorithms in solv-

ing multidimensional problems. A practical illustration of the method's operational mecha-

nism and some fundamental features of its implementation will be examined in the context of 

solving typical applied problems. 

The purpose. The research aim is to improve understanding of the behavior of the 

Monte Carlo method in parallel computing and to identify optimal load distribution strategies 

to ensure fast and accurate convergence. Development and analysis of the efficiency of paral-

lelizing the Monte-Carlo method is implemented using the Python programming language. 

Main focus is on studying the convergence of the method, examining the impact of parallel-

ization on the accuracy and convergence speed, as well as assessing the scalability of compu-

tations on multi-core processors. 

Main research material presentation. Many software applications developed for sin-

gle-processor computing systems lack an adequate level of parallelism. Attempts to parallel-

ize them at the level of individual loops often do not yield the desired results, leading to low 

code performance. 

The Monte-Carlo method occupies a prominent position among different numerical 

methods in mathematical calculations. However, its use has been limited in the past due to the 

substantial computational resources it requires. 

It is important to highlight, that the Monte-Carlo method allows finding an approximate 

solution to a problem at a specific fixed point, without requiring knowledge of the solutions at 

all points in the grid domain. This makes it notably different from, for instance, traditional 

methods of solving the Dirichlet problem. 

The simplified computation scheme using the Monte-Carlo method is shown in Fig. 1. 

 



«Системні технології» 3 (158) 2025 «System technologies» 

 

ISSN 1562-9945 (Print) 

ISSN 2707-7977 (Online) 

78 

 

Figure 1 - Monte-Carlo method calculation scheme 

 

The application of this method provides a new way to view the idea of parallelizing 

computations and using parallel computing technologies. As intermediate calculations can be 

carried out independently across different processor cores, their results can be consolidated on 

a dedicated "analyzer" core. This allows the parallel computing algorithm to be represented 

with a scheme, as illustrated in Fig. 2. 

According to this scheme, a single random number generator assigns a specific random 

value to each "compute unit". However, this architecture has a significant drawback: the con-

stant transmission of information through communication channels creates delays and reduces 

system's performance. Additionally, the quality of random number generator can affect the 

result, as repetitions or similar values may occur in the sequence of random numbers. Howev-

er, these factors do not have a significant impact on the calculation error. 

 
Figure 2 - Monte-Carlo parallel computing algorithm 

 

The experience in developing parallel computations allowed to improve this scheme. 

The modified algorithm, shown in Fig. 3, assumes that each compute unit has a separate ran-

dom number generator. This removes the necessity for constant data transmission between the 

generator and the processing cores, greatly accelerating the computation process. 

Thus, Monte-Carlo algorithms demonstrate high resilience to changes in input data, 

provide maximum parallel efficiency, and minimize computation time. By appropriately dis-

tributing computing cores, it is possible to organize parallel execution of calculations across 

the entire domain, thereby improving the overall system performance. 

 



«Системні технології» 3 (158) 2025 «System technologies» 

ISSN 1562-9945 (Print) 

ISSN 2707-7977 (Online) 
79 

 

Figure 3 - Modified Monte-Carlo parallel computing algorithm 

 

Realization of parallel computations was carried out using the Python programming 

language. It is worth mentioning that Python is currently one of the most widely used pro-

gramming languages for developing and modeling parallel computations. This is attributed to 

its ease of use, extensive library ecosystem, and an active developer community, that continu-

ously enhances tools and shares expertise. The use of Python for realization parallel computa-

tions is explained by several key factors, including ease of modeling, the availability of spe-

cialized libraries, a wide range of tools for handling large volumes of data, as well as integra-

tion with modern hardware accelerators such as graphics processing units (GPUs) and tensor 

processing units (TPUs). 

The popularity of Python continues to grow rapidly alongside the development of paral-

lel computing and artificial intelligence. This makes it an ideal option for both academic re-

search and commercial use in the field of deep learning. A number of prominent companies, 

such as Google, Facebook, and OpenAI, extensively utilize Python in their developments, 

thereby reinforcing its dominance in the realms of artificial intelligence and parallel pro-

gramming. 

One of Python`s key advantages is its convenience for rapid prototyping. Due to the in-

terpreted nature of the language, developers can swiftly experiment with various parallel 

computation architectures, adjust model parameters, and obtain real-time results, which sig-

nificantly accelerates the development process. 

In addition, Python is renowned for its high compatibility with other programming lan-

guages and frameworks. For instance, modules such as Cython facilitate seamless interaction 

with C/C++, thereby significantly enhancing computational performance. Python also inte-

grates seamlessly with leading big data processing tools, such as Apache Spark, making it a 

versatile solution for machine learning and data analysis tasks. 

Thus, Python remains the leading programming language for implementing parallel 

computations, offering exceptional flexibility, ease of use, and a powerful toolkit for handling 

complex computational tasks. 



«Системні технології» 3 (158) 2025 «System technologies» 

 

ISSN 1562-9945 (Print) 

ISSN 2707-7977 (Online) 

80 

The software implementation of the computations was developed based on the princi-

ples of object-oriented programming. This approach is justified by the fact that object-

oriented programming facilitates the creation of modular, reusable, and scalable parallel com-

putations. Through encapsulation, inheritance, and polymorphism, efficient systems for multi-

threaded and multi-processor data processing can be built. Therefore, a class was created to 

perform the necessary calculations: 

class Integral: 

def __init__(self, a, b, integrand, integral_mlt=1): 

self.__a = None 

self.__b = None 

self.__integrand = None 

self.__variables = None 

self.__integral_mlt = None 

The following libraries were also utilized, enabling efficient work with computations in 

both numerical and symbolic mathematics, as well as facilitating the implementation of mul-

tiprocessing programming: 

import numpy as np 

from sympy import sympify, zoo, SympifyError 

from multiprocessing import Pool, cpu_count 

from functools import partial 

import time 

NumPy was used as the primary library for working with multidimensional arrays and 

performing numerical computations. For the purpose of these studies, it supported array ma-

nipulation and the use of optimized functions for efficient calculations. 

 sympify() function from the symbolic computation library SymPy was used to convert 

the necessary data into a symbolic expression; the symbol zoo was employed to denote unde-

fined values arising in mathematical expressions; the SympifyError class was utilized to han-

dle errors occurring due to incorrect input in the sympify() function. These elements facilitate 

symbolic computations, enabling the efficient handling of mathematical expressions and ex-

ceptional cases. 

Multiprocessing library was utilized for the implementation of parallel computations. 

Pool class in the multiprocessing module allows creation of a pool of processes for parallel 

task execution. It creates a specified number of processes and distributes tasks among them, 

which allows efficient utilization of multi-core processor resources. 

 cpu_count() function returns an integer representing the number of processor cores 

available for computation. In this research, it was utilized to determine the optimal number of 

processes for multiprocessing tasks. This function enables the automatic configuration of a 

process pool (Pool) to ensure efficient resource utilization. It has proven to be exceptionally 

useful when handling intensive computational workloads, such as machine learning, big data 

processing, and parallel algorithms. 

 partial function from the functools module enabled the creation of new functions based 

on existing ones by predefining certain arguments. This not only streamlined function calls, 

where specific arguments are frequently used, but also facilitated the passing of functions as 



«Системні технології» 3 (158) 2025 «System technologies» 

ISSN 1562-9945 (Print) 

ISSN 2707-7977 (Online) 
81 

parameters in multithreaded code. Moreover, it contributed to the development of new func-

tion variations without redundant code duplication. 

time library has provided the capability to work with time. 

monte_carlo_method_parall method performs parallel computations by leveraging the 

multiprocessing library, effectively distributing the computational load among several pro-

cesses: 

def monte_carlo_method_parall(n: int, integral: Integral, 

**kwargs): 

    cpu_cnt = cpu_count() 

    if n <= cpu_cnt: 

        chunks = [1] * n 

    else: 

        chunk_size = n // cpu_cnt 

        remainder = n % cpu_cnt 

        chunks = [chunk_size + 1 if i < remainder else 

chunk_size for i in range(cpu_cnt)] 

    monte_partial = partial(monte_carlo_method, inte-

gral=integral, **kwargs) 

    with Pool(processes=cpu_cnt) as pool: 

        results = pool.map(monte_partial, chunks) 

    return np.mean(results) 

At the first stage, method determines the number of available system cores, using the 

cpu_count() function. Then, if the number of cores is greater than or equal to the number of 

points to be generated, each process handles one point (if there are more points than cores, 

some processes may remain unused). If the number of points exceeds the available cores, 

method calculates cluster size – number of points each process should handle, by performing 

integer division of the total number of points by the number of cores. In cases where the 

points do not divide evenly, the remainder is distributed uniformly across the processes using 

the following expression: 

chunks = [chunk_size + 1 if i < remainder else chunk_size for i 

in range(cpu_cnt)] 

Then method utilizes the partial function to create a partial function, that incorporates 

the common arguments required for all processes to compute the integral values (specifically, 

the integral object and additional parameters passed through kwargs). This partial function is 

based on the monte_carlo_method. 

monte_partial = partial(Integrator.monte_carlo_method, inte-

gral=integral, **kwargs) 

After the distribution of points, the monte_carlo_method_parall method utilizes the 

Pool from the multiprocessing module to initiate several parallel processes. Pool invokes the 

created partial function across multiple processes, passing it the corresponding number of 

points for processing. The results from each process are stored in the results variable: 

results = pool.map(monte_partial, chunks) 

Once all processes are completed,  method calculates the average of the obtained partial 

results using the mean function and returns the final outcome. 



«Системні технології» 3 (158) 2025 «System technologies» 

 

ISSN 1562-9945 (Print) 

ISSN 2707-7977 (Online) 

82 

The initial data for the class of problems under study are wrapped in the condition if 

__name__ == "__main__": 

if __name__ == “__main__”: 

    integral = Integral(0, 1, “(exp(-x)+1)**2”) 

    n = 60000 

    start_time = time.time() 

    result = monte_carlo_method_parall(n, integral) 

    end_time = time.time() 

    exec_time = end_time – start_time 

Furthermore, to evaluate the efficiency of parallelization, the computation time for both 

sequential and parallel algorithms is determined. In the given case, an integral is computed for 

a function that lacks analytical quadrature solutions. 

The efficiency of the parallel code was assessed by measuring its acceleration and paral-

lelization effectiveness. These metrics were calculated using well-established formulas from 

parallel computing theory. 

speedup attained by executing a parallel algorithm on n cores, in comparison to sequen-

tial execution, is determined by the following formula: 

                                   1( )
n

t
S n

t
 ,                                                                                     (3) 

where S is the acceleration; t₁ is the time taken to solve the task on a scalar processor; tₙ is the 

time taken to solve the task on a processor with n cores. 

Therefore, acceleration is calculated as the ratio between the execution time of a task on 

a scalar processor and the time taken by the parallel algorithm. The parameter n serves to rep-

resent the computational complexity of the problem at hand. 

The efficiency of parallelization is determined by the following formula: 

                              1 ( )
( ) .

n

t S n
E n

t n n
 


                                                                          (4) 

For this type of computation, the effectiveness of parallelization represents the average 

duration of the algorithm's execution during which processor cores are actively involved in 

solving the task. 

It should be noted that the control experiments were conducted using a computer with 

the following specifications: 

Processor type: Core(TM) i5-11400H; clock frequency: 2.70GHz; number of cores: 6. 

In accordance with expressions (3) and (4), the following efficiency estimates of the 

code parallelization were obtained: S(n) = 4,469; E(n) = 0,745. 

Analysis of the conducted research revealed the following. Efforts to improve the quali-

ty of parallel computing based on one metric (such as speedup or efficiency) may lead to a 

deterioration in another metric, as the quality indicators of parallel computations are often 

conflicting. An increase in acceleration is typically achieved by increasing the number of pro-

cessor cores, which, however, often results in a efficiency decrease. Conversely, enhanced 

efficiency is frequently attained by reducing the number of processor cores(with the ideal case 

of perfect efficiency, E(n) = 1, being effortlessly achieved by using a single-core processor. 



«Системні технології» 3 (158) 2025 «System technologies» 

ISSN 1562-9945 (Print) 

ISSN 2707-7977 (Online) 
83 

As a result, the development of parallel computation methods often involves selecting a cer-

tain compromise, taking into account the desired acceleration and efficiency metrics, as it 

demonstrated by the presented studies. 

The peculiarities of studying the accuracy using the Monte-Carlo method were as fol-

lows. It is known that the accuracy of the Monte-Carlo method possesses several distinctive 

features. The initial test revealed, that the computational error is dependent on the number of 

tests, denoted as n. This indicates that as n increases, the obtained results approach the actual 

value, and the absolute error gradually diminishes. On average, the theoretical convergence 

rate of the Monte-Carlo method is determined as follows (1/ )O n , meaning that the error 

decreases inversely proportional to the square root of the number of trials. 

To verify this, nine series of approximations were conducted: first approximation in-

volved 50 points,  second 100 points, and so on up to 50,000 points. Each experiment was re-

peated 30 times for each set of points, after which the average absolute error was calculated. 

Since the Monte-Carlo method relies on randomly generated points, the error can vary de-

pending on the quality of the random sampling. Therefore, to minimize the impact of ran-

domness, each experiment was repeated multiple times, and the resulting outcomes were av-

eraged. Based on this data, a graph of the mean absolute error was constructed for sample siz-

es of 50, 100, 500, 1000, 2000, 2500, 5000, 10,000, and 50,000 tests. 

Fig. 4 illustrates the convergence of the Monte-Carlo method. 

Let us analyze the obtained results. The graph illustrates the dependence between the 

absolute error and the number of points, n, in the Monte-Carlo method. Upon examining it, 

the following conclusions can be drawn: 

− the typical convergence behavior (1/ )O n  of the Monte-Carlo method is confirmed; 

 

Figure 4 - Monte-Carlo convergence graph 

 



«Системні технології» 3 (158) 2025 «System technologies» 

 

ISSN 1562-9945 (Print) 

ISSN 2707-7977 (Online) 

84 

− increasing n leads to a decrease in the error, albeit slowly, which is a characteristic 

feature of this method; 

− the actual error aligns well with the theoretical estimate, indicating the correct imple-

mentation of the parallel algorithm; 

− the x-axis (number of points) and y-axis (absolute error) are presented on a logarith-

mic scale, providing a clear depiction of the power-law relationship. 

Fig. 5 presents a graph depicting the convergence approximation of the Monte-Carlo 

method. 

An analysis of this dependency reveals, that for small values of n (up to 500–1000), sig-

nificant deviations from the exact value occur, due to the high variance of the method when 

the number of samples is insufficient. In some cases, certain values may even fall outside the 

expected range, which is characteristic of the stochastic nature of the Monte-Carlo method. 

At the same time, as the value of n increases, the method begins to stabilize. Starting 

from approximately 3000–4000 points, the results converge almost entirely with the exact 

value. This confirms the fundamental principle of Monte-Carlo: as the sample size grows, the 

method yields increasingly accurate results. 

 

Figure 5 - The approximation convergence curve of the Monte-Carlo method 

 

Conclusions. Research explores parallel technologies for modeling Monte-Carlo tasks. 

The relevance of the conducted studies is underscored by the fact that the Monte-Carlo meth-

od has had, and continues to have, a profound impact on the development of computational 

mathematics techniques. It has been shown that its use is especially appropriate for solving 

problems that can be described in theoretical and probabilistic terms. This is due to both the 

natural process of obtaining a solution with a given probability in probability-based tasks and 

the considerable simplification of the solution procedure. 

This inherent ability to parallelize the method arises from the fact that individual Mon-

te-Carlo iterations are generally independent of each other, making them easy to distribute 

across multiple threads or nodes within a cluster system. This characteristic makes the method 

especially well-suited for parallel and distributed computing. As a result, the main focus of 



«Системні технології» 3 (158) 2025 «System technologies» 

ISSN 1562-9945 (Print) 

ISSN 2707-7977 (Online) 
85 

the research was to explore the intricacies of parallelizing computations in the context of solv-

ing a diverse array of applied problems. 

It is worth noting that parallelizing the Monte-Carlo method is an important and rele-

vant area in contemporary computational science, as it significantly enhances the speed and 

efficiency of calculations. With the availability of powerful processors and GPUs, this ap-

proach is widely applied across various fields of science and industry. 

The calculation schemes that enhance productivity and performance are presented. The 

effectiveness of the proposed approach is demonstrated through research and graphical inter-

pretations, showcasing the convergence and approximation of the developed method. 

Finally, it should be highlighted that the Monte-Carlo method is a highly effective tech-

nique for addressing a broad spectrum of practical problems. It is easy to implement, and its 

error can be minimized by increasing the sample size. 

Like any method, Monte-Carlo has its drawbacks. For instance, when working with a 

small amount of data, the variance becomes excessively high, and in such cases, it is often 

preferable to turn to alternative approaches. 

REFERENCE 

1. Rud O. Theoretical aspects of using the monte carlo method for modeling the evaluation of 

investment projects efficiency. Market Infrastructure. 2024. No. 79.  

URL: https://doi.org/10.32782/infrastruct79-24 

2. Sirenko К. A., Mazur V. L., Derecha D. О. Application of the monte carlo method in 

charge calculations and regulation of the chemical composition of pig iron in the process of its 

smelting. Casting processes. 2023. Vol. 154, no. 4. P. 44–57.  

URL: https://doi.org/10.15407/plit2023.04.044 

3. Nekrasova M. Monte-Carlo method and artificial intelligence: application of Monte-Carlo 

method in reinforcement learning. Bulletin of the National Technical University «KhPI» Se-

ries: Dynamics and Strength of Machines. 2024. No. 2. P. 47–52.  

URL: https://doi.org/10.20998/2078-9130.2024.2.315342  

4. Velikova T., Mileva N., Naseva E. Method “Monte Carlo” in healthcare. World Journal of 

Methodology. 2024. Vol. 14, no. 3. URL: https://doi.org/10.5662/wjm.v14.i3.93930  

5. Kroese D. P., Rubinstein R. Y. Simulation and the Monte Carlo Method. Wiley & Sons, 

Incorporated, John, 2016. 432 p. 

6. Caflisch R. E. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica. 1998. Vol. 7. 

P. 1–49. URL: https://doi.org/10.1017/s0962492900002804  

7. Kroese D. P., Taimre T., Botev Z. I. Handbook of Monte Carlo Methods. Wiley & Sons, 

Incorporated, John, 2013. 772 p. 

8. Binder K., Heermann D. W. Monte Carlo Simulation in Statistical Physics: An Introduc-

tion. Springer, 2019. 258 p. 

9. Wang H. Monte Carlo Simulation with Applications to Finance. Taylor & Francis Group, 

2012. 292 p. 

10. Kalos M. H. Monte Carlo Methods in Quantum Problems. Dordrecht : Springer Nether-

lands, 1984. 291 p. 
Received 02.04.2025. 

Accepted 04.04.2025. 



«Системні технології» 3 (158) 2025 «System technologies» 

 

ISSN 1562-9945 (Print) 

ISSN 2707-7977 (Online) 

86 

Розробка та дослідження паралельних технологій 

задач стохастичного програмування 

У дослідженнях розглядаються паралельні технології моделювання задач мето-

дом Монте-Карло. Показано, що основна суть методу полягає у випадковому моделю-

ванні великої кількості сценаріїв та статистичній обробці результатів, що пояснює 

природну можливість його розпаралелювання. Відзначається, що оскільки окремі іте-

рації методу Монте-Карло зазвичай незалежні одна від одної, їх легко розподілити 

між кількома потоками або вузлами кластерної системи. Це робить метод ідеальним 

для паралельних і розподілених обчислень. Приводяться схеми обчислень, які забезпе-

чують збільшення продуктивності та швидкодії. Ефективність запропонованого під-

ходу ілюструється дослідженнями та графічними інтерпретаціями збіжності та 

апроксимації розробленого підходу. 
 

Швачич Геннадій Григорович – доктор технічних наук, професор кафедри програм-

ного забезпечення комп’ютерних систем,  НТУ «Дніпровська політехніка», Дніпро, 

Україна. 

Щербина Павло Олександрович – асистент кафедри програмного забезпечення 

комп’ютерних систем,  НТУ «Дніпровська політехніка», Дніпро, Україна. 

Кабаченко Олег Вікторович – студент кафедри програмного забезпечення 

комп’ютерних систем,  НТУ «Дніпровська політехніка», Дніпро, Україна. 

Олішевський Ілля Геннадійович – доктор PhD, доцент кафедри безпеки інформації 

та телекомунікацій,  НТУ «Дніпровська політехніка», Дніпро, Україна. 

Іщук Павло Олександрович – аспірант кафедри програмного забезпечення 

комп’ютерних систем,  НТУ «Дніпровська політехніка», Дніпро, Україна. 
 

Shvachych Gennady –  Doctor of science, Professor, Department of Computer Systems 

Software, Dnipro University of Technology, Dnipro, Ukraine. 

Shcherbyna Pavlo – Assistant, Department of Computer Systems Software, Dnipro Universi-

ty of Technology, Dnipro, Ukraine. 

Kabachenko Oleg – student of the Department of Computer Systems Software, Dnipro Uni-

versity of Technology, Dnipro, Ukraine. 

Olishevskyi Ilya – Doctor PhD, assosiate professor, Department of Information Security and 

Telecommunications, Dnipro University of Technology, Dnipro, Ukraine. 

Moroz Dmytro – Doctor PhD, assosiate professor, Department of Computer Systems Soft-

ware, Dnipro University of Technology, Dnipro, Ukraine. 

Ishchuk Pavlo – PhD student of the Department of Computer Systems Software, Dnipro 

University of Technology, Dnipro, Ukraine. 


