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Abstract. The relevance of this study is driven by the growing interest in portable EEG devic-

es and the need to develop efficient algorithms for analyzing brain activity with limited tech-

nical resources. This paper addresses the problem of classifying brain states based on elec-

troencephalography (EEG) data to distinguish between two specific states: relaxation and 

concentration. The classification of open and closed eyes is examined, as eye closure is asso-

ciated with increased relaxation. A classification method based on the quantitative analysis of 

recurrence plots, which is one of the approaches of chaos theory, is proposed and compared 

with traditional brain rhythm analysis. Experimental results showed that the recurrence anal-

ysis method outperforms spectral analysis in classification accuracy, particularly for the O1 

point, where accuracy increased from 86% to 95%. The optimal parameters for phase space 

reconstruction were determined: delay 25 ms and dimension of the embedding space 4, which 

are consistent with the spectral characteristics of the signal. Feature importance analysis re-

vealed that the most significant parameters for classification are entropy, the length of white 

vertical and diagonal lines in recurrence plots, as well as determinism and laminarity. The 

obtained results may be useful for developing EEG analysis algorithms in portable devices 

and applications in the fields of brain-computer interfaces and cognitive training. 

Keywords: EEG classification, open and closed eyes, recurrence analysis, recurrence plots, 

chaos theory, brain rhythms, phase space, spectral analysis, SVM, determinism. 

 

Statement of the problem. This paper addresses the problem of classifying brain states 

based on EEG, specifically distinguishing between relaxation and concentration. The classifi-

cation of open and closed eyes is examined, as eye closure is typically associated with in-

creased relaxation. Therefore, analyzing this phenomenon may contribute to a better under-

standing of relaxation mechanisms. 

Recently, an increasing number of portable EEG devices, such as MyndPlay and  

Muse [1], have emerged. These devices are relatively low-cost, making them accessible to a 

wide range of users. This creates a demand for data processing algorithms capable of operat-

ing with fewer electrodes and lower-quality signals compared to full-scale medical equip-

ment. 

Processed brain state data can be useful for self-monitoring, allowing users to analyze 

how their habits affect brain activity. This may contribute to increased productivity or im-

proved rest quality. Additionally, such technologies can help individuals train their ability to 
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consciously adjust their state according to situational needs, for example, enhancing concen-

tration during work or facilitating relaxation during rest. 

A promising direction is also the use of such technologies for controlling devices “by 

the power of thought,” which can be especially useful for people with paralysis. 

This article explores the classification of brain states using chaos theory methods, par-

ticularly through the analysis of recurrence plots. Additionally, this approach is compared 

with classification based on brain rhythm analysis, a classical method of EEG signal pro-

cessing. 

Analysis of the latest research and publications. Currently, there are several main ap-

proaches to EEG signal processing. The first approach is based on brain rhythm analysis us-

ing spectral analysis, which was examined in a previous study [2]. That study focused on sig-

nal classification based on the alpha rhythm. The essence of this approach is to calculate the 

amplitudes of each signal frequency, after which the power of the corresponding frequency 

bands is determined. These bands are known as rhythms: delta rhythms (0.5–4 Hz), theta 

rhythms (4–8 Hz), alpha rhythms (8–12 Hz), beta rhythms (12–30 Hz), and gamma rhythms 

(>30 Hz). As demonstrated in the cited work, the alpha rhythm contains the most information 

regarding the state of open or closed eyes. 

An alternative approach is based on the application of chaos theory. Since brain signals 

are quasi-periodic, this method also demonstrates effective results. The study by Farzad [3] 

reviews 55 studies on the application of chaos theory to EEG analysis. The author states: 

“The evidence from 55 articles suggests that cognitive function is more frequently assessed 

than other brain functions in studies using chaos theory. The most frequently used techniques 

for analyzing chaos include the correlation dimension and fractal analysis. Approximate, 

Kolmogorov and sample entropy account for the largest proportion of entropy algorithms in 

the reviewed studies.” This work emphasizes that the choice of delay and dimension of the 

embedding space are critical parameters that significantly affect the analysis results. 

A notable study by Kusuma Mohanchandra [4] examines theoretical approaches of cha-

os theory to EEG data analysis for brain-computer interfaces (BCI). The study states that cor-

relation dimension is widely used as a quantitative parameter for describing attractors and has 

proven effective in characterizing brain dynamics at different sleep stages. Moreover, this pa-

rameter is applied to differentiate between normal subjects and patients with pathologies such 

as epilepsy, Alzheimer’s disease, dementia, and Parkinson’s disease. 

Another important study [5] focuses on the use of various approaches to three-

dimensional phase space reconstruction for five different brain activity states. EEG signals 

corresponding to these states in seven subjects were analyzed using methods such as deter-

minism, phase graph, power spectrum, approximate entropy, correlation dimension, and Lya-

punov exponents. Although each method has its advantages and limitations, the results con-

firm the nonlinear dynamic nature of brain activity. In particular, determinism analysis 

showed that the EEG signal occupies an intermediate position between a random and a deter-

ministic process, indicating a possible chaotic nature of brain activity. 

The study by Furman [6] proposes a combined approach of short-time Fourier Trans-

form and recurrence quantitative analysis to improve classification accuracy (STFT-RQA) 
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and compares it with classification based on time-delay embedding and recurrence quantita-

tive parameters (TD-EMB-RQA). The STFT-RQA method demonstrated high efficiency, 

achieving an overall accuracy of 88.2%. Parameter optimization increased accuracy to 95.9% 

when using 194 selected features. At the same time, TD-EMB-RQA classification proved less 

effective than STFT, as the analysis of RQA features did not reveal significant discriminative 

ability, yielding an average accuracy of 80%. However, the removal of redundant components 

in the cross-validation scheme improved accuracy to 89.2% for 80 selected parameters. 

Studies conducted in this and previous works have highlighted the importance of the 

10 Hz frequency for the closed-eye state, which can be considered a fundamental frequency of 

brain activity. This phenomenon was examined in detail by Garcia-Rill [7], where it is ex-

plained that 10 Hz represents the brain’s natural “idling” frequency in a resting state. A de-

crease in this frequency may lead to impaired sensorimotor function, as perception at frequen-

cies below 10 Hz becomes less effective. Conversely, an increase in the alpha rhythm fre-

quency to the beta or gamma range occurs when the reticular activating system (RAS) is acti-

vated in response to sensorimotor stimulation. Indirect evidence from fMRI studies of cere-

bral blood flow supports this concept, as alpha rhythms (particularly the occipital and mu 

rhythms) correlate with reduced cerebral blood flow, indicating lower brain activity. 

Objective. The aim of this article is to develop an algorithm that classifies the given da-

taset and evaluates its accuracy in comparison with the results obtained through spectral anal-

ysis. Special attention is given to a qualitative analysis of the obtained data, which will help 

identify the most influential parameters of recurrence analysis in the classification process. 

Additionally, the study explores the nature of the relaxed state, particularly by analyzing 

the key characteristics of signals. Identifying the most significant parameters and their impact 

on the analysis results will provide a deeper understanding of the underlying mechanisms of 

the system’s state and contribute to improving classification approaches for similar data in the 

future. 

Presentation of the main material of the research. The EEG Motor Move-

ment/Imagery Dataset [8] was used for analysis. It contains over 1,500 EEG recordings last-

ing from one to two minutes, collected from 109 participants. During the experiment, partici-

pants performed various motor and imagery tasks while 64-channel EEG signals were record-

ed using the BCI2000 system [9]. 

Each participant underwent 14 experimental sessions, including two baseline trials (one-

minute each) - one with open eyes and the other with closed eyes. Additionally, three two-

minute trials were conducted for each of the four tasks. Participants were instructed to open 

and close their fists in response to a target appearing on the left or right side of the screen or 

to imagine performing this movement. Furthermore, additional tasks required them to open 

and close both fists or both feet, depending on the target position. 

The recordings are presented in the EDF+ format, containing 64 EEG signals recorded 

at a frequency of 160 Hz, along with an annotation channel. The annotations include codes 

indicating different states: T0 for rest, T1 for the initiation of movement (real or imagined) of 

the left fist or both fists, and T2 for the movement of the right fist or both legs. The recordings 
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were obtained using electrodes based on the international 10-10 system, which excludes cer-

tain specific electrodes. The EDF+ format is adapted for use with the PhysioToolkit  

software [10]. 

Each participant has a unique identifier ranging from S001 to S109, along with 14 files 

labeled R01–R14, containing the corresponding EEG recordings. Thus, each recording file is 

represented in the format SsssRrr.edf, where  denotes the participant number and  repre-

sents the experiment stage. In this study, recordings from the following stages were used: 

• 1 – resting state, eyes open; 

• 2 – resting state, eyes closed. 

Signal Normalization. Preprocessing of the signal is critical for recurrence analysis. In 

particular, noise removal is an important step, as demonstrated in previous studies. In this ex-

periment, the following types of noise were eliminated: low-frequency noise (<2 Hz), which 

may reflect head movements and blinking; 50/60 Hz noise caused by interference from the 

AC power grid; and high-frequency noise from muscle activity (>50 Hz). To achieve this, the 

Short-Time Fourier Transform (STFT) was applied using a Hann window with a segment size 

of 1 second [2]. 

The next important step is signal normalization, which allows data obtained from differ-

ent electrodes, participants, and time points to be brought into a unified numerical range. In 

Rolink’s study [11], Z-score normalization was applied for electrocardiogram processing, as 

well as normalization of 30-second segments based on standard deviation. 

In this study, Z-score normalization with 1-second segments was used for EEG signal 

processing. To ensure the continuity of the normalized signal, the segments were merged us-

ing a Hann window. 

The Hann function [12] is defined as: 

 
A key feature of this window is that the sum of the function and its copy, shifted by 

half the window size , equals one: 

 

 

Thus, if the signal segments overlap by half, following the scheme 

 
then their recombination results in a restored signal without distortions. This processing tech-

nique is known as windowing. 
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Since the signal recording has finite boundaries, their handling must be considered. The 

simplest approach is to pad the signal with zero values at the beginning and end, and then re-

move these values after recombination. 

The formula for Z-score normalization [11] is given by: 

 

where  is the value of a discrete data array,  is the size of the array,  is the normalized 

value,  is the mean of the array, and  is the standard deviation. 

 
Figure 1 - Signal normalization 

 

Figure 1 shows the normalized signal for the O1 electrode with eyes closed. It can be 

seen that the signal values after normalization fall within the range . In some cases, 

such as during blinking, the values may reach up to 5, but the overall distribution remains ap-

proximately within the range . 

Recurrence Analysis. Recurrence analysis is used to study dynamical systems that may 

exhibit complex and nonlinear behavior. To analyze time series data such as EEG signals, a 

phase space is constructed. Let  be the time series of the EEG signal. To represent it in the 

phase space, the method of time delay embedding is used. The embedding vector is  

defined [13] as: 

 

where  is the time delay,  is the number of dimensions (embedding),  is the input signal, 

and  is the resulting point in the -dimensional phase space. This approach allows for the 

construction of a multidimensional representation of the original signal. 
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Next, to analyze recurrence, the recurrence matrix  is introduced, 

which determines whether the system returns to one of its previous states: 

 

where  is the distance between two points  and  in the phase space,  is the 

threshold that determines when two points are considered recurrent, and  is the Heaviside 

function, which takes the value 1 if the condition is satisfied, and 0 otherwise. 

A recurrence plot is a visualization of the matrix , where recurrent 

events are shown as black dots. Patterns in this plot help identify features of the signal’s dy-

namics, such as differences between the eyes-open and eyes-closed states. 

Additionally, numerical quantitative measures can be computed from the recurrence 

matrix [14], such as: 

•  (Minimum diagonal line length): the minimum length of a diagonal line in the 

recurrence plot considered for the calculation of determinism. 

•  (Minimum vertical line length): the minimum length of a vertical line considered 

for laminarity. 

•  (Minimum white vertical line length): the minimum length of a white vertical 

line used to calculate trapping time. 

•  (Recurrence rate): a measure of recurrence that indicates the percentage of recur-

rent points in the matrix: 

 

•  (Determinism): the proportion of points forming diagonal lines: 

 

•  (Average diagonal line length): the average length of diagonal lines: 

 

•  (Longest diagonal line length): the length of the longest diagonal line in the plot. 

•  (Divergence): the reciprocal of the longest diagonal line length: 

 

•  (Entropy of diagonal lines): the entropy of diagonal line lengths, which reflects 

their diversity: 

 

•  (Laminarity): the proportion of points forming vertical lines: 
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•  (Trapping time): the average length of vertical lines: 

 

•  (Longest vertical line length): the length of the longest vertical line in the plot. 

•  (Entropy of vertical lines): the entropy of vertical line lengths. 

•  (Average white vertical line length): the average length of white vertical lines (gaps 

between recurrent events). 

•  (Longest white vertical line length): the length of the longest white vertical line. 

•  (Longest white vertical line divergence): the reciprocal of the longest white vertical 

line. 

•  (Entropy of white vertical lines): the entropy of white vertical lines. 

•  (Ratio of determinism to recurrence rate): the ratio of determinism to recurrence rate. 

•  (Ratio of laminarity to determinism): the ratio of laminarity to determinism, indicat-

ing the proportion of trapped states in the system. 

Here: 

•  is the number of points in the analyzed time series, or the number of points in the 

phase space forming the recurrence matrix. 

•  is the length of a diagonal line in the recurrence plot. It corresponds to the number of 

consecutive recurrent points forming a diagonal. 

•  is the length of a vertical line in the recurrence plot. It corresponds to the number of 

consecutive recurrent points forming a vertical line. 

•  is the number of diagonal lines of length  in the recurrence plot. 

•  is the number of vertical lines of length  in the recurrence plot. 

Determining the parameters  and  is a crucial step in the reconstruction of the 

phase space. There are several approaches for selecting the optimal value of the delay , with 

two main methods being: the mutual information (MI) method and the autocorrelation  

method [15]. 

The MI method is used to analyze the interdependence between the values of the time 

series and its time-shifted version. However, in the case of quasi-periodic series with harmon-

ics of decreasing amplitude, this approach may yield incorrect results, as the choice of  may 

be based on insignificant high-frequency components. 

The autocorrelation method is a more traditional way of determining  and is based on 

calculating the correlation coefficient between the original signal  and its delayed copy 

by . This approach was introduced in the book [16]. The value of  is typically chosen at the 
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point where the autocorrelation coefficient  drops to the level of . The most common 

types of autocorrelation used are Pearson correlation and Spearman correlation. 

There are various methods for determining the dimension of the embedding space, with 

the most common being the box-counting method, the correlation dimension method, and the 

false nearest neighbors (FNN) method. 

The false nearest neighbors (FNN) method is one of the most widely used approaches 

for geometrically determining the minimal dimension of the embedding space  when recon-

structing the state space [15]. It is based on the idea that, in an insufficiently dimensional em-

bedding space, neighboring points may appear close to each other due to the projection of a 

higher-dimensional space onto a lower-dimensional one. The method allows determining the 

optimal  at which the relative number of false neighbors becomes minimal. 

To apply this method, the time series is repeatedly embedded into a sequence of -

dimensional Euclidean spaces over a range of increasing values of . The core idea is that 

once the minimum dimension of the embedding space  is reached (i.e., ), the dis-

tance between neighboring points does not change significantly with further increases in . 

In other words, the Euclidean distance  between a point  and its nearest 

neighbor  changes minimally when the dimension of the embedding space increases 

to . 

If the dimension of the embedding space  is too small, then the points are considered 

false neighbors if their pairwise distance increases significantly when  is incremented. This 

change in distance between nearest neighbors embedded in  and  is quantitatively 

assessed using the false nearest neighbors ratio: 

 

Next,  is compared to a tolerance threshold  to distinguish false neighbors, con-

sidering them false when . In this study, we choose . By applying this 

threshold to all points, we can compute the percentage of false nearest neighbors, FNN . 

If the system is noise-free,  should reach zero once a sufficient dimension of the 

embedding space is achieved. However, in the presence of additional noise,  may never 

reach zero. Therefore, it is common practice to use a cutoff percentage for FNN to determine 

a sufficient dimension of the embedding space . We use the commonly adopted threshold 

, which is suitable for most applications involving moderate noise. 
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Both methods are implemented in the Teaspoon mathematical package for the Python 

programming language for signal processing [17], which was chosen for use in the experi-

ments. 

During the experiments, it was found that determining the parameters  and  without 

windowed normalization led to ambiguous results. However, after normalization, it became 

possible to clearly identify the values of these parameters. When analyzing EEG signals in the 

eyes-closed state across different participants, it was determined that the dimension of the 

embedding space is  and the time delay is , which corresponds to 25 ms 

( ), based on a sampling rate of 160 Hz. Figure 2 shows the computed values of  

and  for all recordings. 

 

Figure 2 - Calculated  and  for dataset recording 

 

These results are consistent with spectral analysis, where a peak in power at 10 Hz is 

observed in the eyes-closed condition. This indicates that the system returns to approximately 

the same state every 100 ms. Thus, in the eyes-closed state, brain dynamics can be represent-

ed as periodic motion in a 4-dimensional space with a time delay of 25 ms, forming a com-

plete cycle over 100 ms. This confirms that the chosen parameters align with the physiologi-

cal characteristics of brain activity. 

Recurrence Plots. To construct recurrence plots, the PyRQA module [18] was used, 

which provides optimized computational efficiency. PyRQA is based on OpenCL technology, 

allowing the use of a GPU to accelerate mathematical operations through parallel execution. 

This significantly reduces computation time compared to traditional approaches. 

According to the study [19], using OpenCL speeds up the construction of recurrence 

plots by more than 5 times compared to OpenMP, which utilizes all CPU cores. When com-

pared to single-core execution, the speedup can reach up to 28 times. This makes PyRQA an 
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efficient tool for analyzing large EEG datasets, which is crucial for studying the complex dy-

namics of brain signals. 

Analysis of recurrence plots for eyes-open and eyes-closed states revealed significant 

differences in the behavior of the brain’s dynamical system. The eyes-open state is character-

ized by a chaotic structure or a focus on a single state, indicating more complex and variable 

activity. In contrast, the eyes-closed state shows long diagonal lines, which indicate periodici-

ty in the process. Frequency spectrum analysis confirmed that this periodicity corresponds to 

10 Hz, which aligns with the concept of the 10 Hz rhythm as the brain’s “idling” state. An 

example of this phenomenon is presented in Figure 3. 

 

Figure 3 - Recurrence plot 

 

Recurrence Quantitative Analysis. To analyze the obtained recurrence plots, quantita-

tive measures were computed using the PyRQA module. Calculations were performed for all 

109 recordings in the dataset, separately for the eyes-open and eyes-closed states, as well as 

for the Af7, Af8, O1, and O2 electrode locations. The data were segmented into 2-second in-

tervals to compute time-dependent metrics. 

To identify the parameter that best separates the eyes-open and eyes-closed classes, a 

metric  was introduced. Classification accuracy was evaluated separately for the eyes-open 

( ) and eyes-closed ( ) cases. The overall classification accuracy was defined as 

 to ensure balance between the classes. 

The mean absolute difference between  and  was calculated for each participant 

using the formula: 
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This value reflects how much the obtained  values for each participant deviate from 

the average value . 

Analysis of Table 1 shows that the most informative features for classifying the eye 

state (open or closed) are determinism ( ), entropy of vertical lines ( ), average 

length of white vertical lines ( ), and longest white vertical line divergence ( ). 

These recurrence analysis parameters make it possible to distinguish the structure of 

time series in eyes-open and eyes-closed states. In particular, high  values indicate great-

er regularity and predictability in signal dynamics, which is characteristic of the eyes-closed 

state. Similarly, the entropy of vertical lines ( ) reflects the variability of transitions be-

tween states, which tends to be more chaotic with eyes open. 

Thus, the obtained results confirm that recurrence analysis can be an effective approach 

for automatic classification of eye state based on EEG signals. 

Table 1 

results of a simple classification of open and closed eyes 

Parameter Point      

 Af7 60.91% 60.91% 72.73% 0.26 0.04 

 Af8 61.82% 61.82% 70.00% 0.25 0.04 

 O1 58.18% 58.18% 58.18% 0.23 0.01 

 O2 55.45% 55.45% 62.73% 0.23 0.01 

 Af7 66.36% 66.36% 70.91% 54.77 15.29 

 Af8 60.00% 60.00% 73.64% 54.11 14.85 

 O1 58.18% 58.18% 68.18% 45.81 5.28 

 O1 55.45% 55.45% 55.45% 1.95 0.04 

 O2 55.45% 55.45% 55.45% 1.95 0.05 

 Af7 69.09% 77.27% 69.09% 407.38 48.20 

 Af8 70.00% 80.00% 70.00% 399.70 53.55 

Classification Using Support Vector Machine. The Support Vector Machine (SVM) 

method with C-support vector classification [20] was applied to improve the accuracy of eye 

state classification. The RBF (Radial Basis Function) kernel was used, enabling effective 

handling of nonlinearly separable classes. The model was configured with parameters 

 and , which control the classifier’s flexibility and the scale of influence of 

individual data points. 

The implementation was carried out using the scikit-learn library [21], which utilizes 

LIBSVM. This ensures efficient optimization of the separating hyperplane and improves clas-

sification accuracy compared to the threshold-based method using recurrence features. 

Eye state classification (open or closed) was initially performed based on brain rhythms 

divided into frequency bands: delta (0–4 Hz), theta (4–8 Hz), low alpha (8–10 Hz), high alpha 
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(10–12 Hz), low beta (12–16 Hz), mid beta (16–20 Hz), high beta (20–30 Hz), low gamma 

(30–40 Hz), and mid gamma (40–50 Hz). 

For classifier training, the first half of each participant’s recording was used, and the 

second half was used for testing. The resulting classification accuracies for different elec-

trodes were: Af7 – 89.38%, Af8 – 87.40%, O1 – 86.80%, O2 – 86.51%. 

Next, recurrence quantitative measures were used for classification, which significantly 

improved the results. Accuracy increased to: Af7 – 94.41%, Af8 – 93.85%, O1 – 95.38%, 

O2 – 95.77%. This indicates that recurrence features are more informative for classifying eye 

states compared to brain rhythm frequency analysis. 

Thus, classification based on recurrence measures demonstrated higher accuracy, espe-

cially in the occipital region of the brain (O1, O2), where primary visual processing takes 

place. This confirms that recurrence analysis methods more effectively capture patterns asso-

ciated with changes in eye state than frequency-based approaches. 

Thus, classification based on recurrence measures demonstrated higher accuracy, par-

ticularly in the occipital region of the brain (O1, O2), where primary visual processing occurs. 

This confirms that recurrence analysis methods are more effective at detecting patterns asso-

ciated with changes in eye state than brain rhythm frequency analysis. 

Analysis of the influence of individual parameters using the SHAP module (Figure 4) 

showed that the most significant features for classification are the inverse of the longest white 

vertical line ( ), the entropy of white vertical lines ( ), the average diagonal line 

length ( ), the longest white vertical line ( ), the longest vertical line in the plot ( ), 

and laminarity ( ). This indicates that the structure of white vertical and diagonal lines in 

recurrence plots plays a key role in recognizing the eye state. 

 
Figure 4 - Determining the most influential classifier parameters 
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Conclusions. Thus, the use of quantitative recurrence measures for eye state classifica-

tion proved to be more effective than traditional brain rhythm analysis. For the O1 electrode, 

classification accuracy based on recurrence features reached 95%, compared to 86% when 

using brain rhythms. This confirms that methods from chaos theory may be more effective for 

analyzing quasi-periodic brain signals. 

The optimal minimum segmentation length for the signal is one second. Smaller seg-

ments result in the loss of useful information. At the same time, the complete absence of seg-

mentation makes the signal more susceptible to low-frequency noise, which distorts its dy-

namics, increases the system’s dimensionality, and significantly degrades the quality of the 

recurrence plots. 

The delay  used for phase space reconstruction is 25 ms, and the dimension of the em-

bedding space  is 4. This is consistent with the results of spectral analysis, where a peak at 

approximately 10 Hz is observed in the eyes-closed condition. Since the period of oscillations 

at this frequency is 100 ms, the chosen delay  ms corresponds to one-quarter of the 

cycle, which is optimal for accurate phase space reconstruction. Therefore, the selected values 

of  and  are well-justified. In future work, we will attempt to construct a system of differ-

ential equations that describes the chaotic behavior of signals in the human cerebral cortex. 

Studying the attractors of such a system using the methods proposed in [22] may provide ad-

ditional insights into brain states associated with relaxation and concentration. 

When constructing a simple classifier using optimal threshold search, it was found that 

the most influential parameters are determinism ( ), entropy of vertical lines ( ), av-

erage length of white vertical lines ( ), and longest white vertical line divergence ( ). 

Analysis of influential parameters in the SVM classifier revealed that the key features for 

class separation are the inverse of the longest white vertical line ( ), entropy of white ver-

tical lines ( ), average diagonal line length ( ), longest white vertical line ( ), long-

est vertical line in the plot ( ), and laminarity ( ). This highlights the importance of 

various aspects of the structural organization of recurrence plots for accurate differentiation of 

eye states. 
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Класифікація стану очей на основі ЕЕГ-даних  

з використанням рекурентного аналізу 

Актуальність цієї статті зумовлена зростаючим інтересом до портативних 

ЕЕГ-пристроїв та необхідністю розробки ефективних алгоритмів аналізу мозкової 

активності за обмежених технічних ресурсів. У цій статті розглядається проблема 

класифікації станів мозку за даними електроенцефалографії (ЕЕГ) з метою розрізнен-

ня конкретних двох станів розслабленості та концентрації. Досліджується класифі-

кація відкритих і закритих очей, оскільки закриття очей асоціюється з підвищеною 

розслабленістю. Запропоновано метод класифікації на основі кількісного аналізу реку-

рентних діаграм, що є одним із підходів теорії хаосу, та проведено його порівняння з 

традиційним аналізом мозкових ритмів. Результати експериментів показали, що ме-

тод рекурентного аналізу перевершує спектральний аналіз за точністю класифікації, 

зокрема для точки O1 точність зросла з 86% до 95%. Визначено оптимальні парамет-

ри реконструкції фазового простору: затримка 25 мс і розмірність простору вкладен-

ня 4, що узгоджується зі спектральними характеристиками сигналу. Аналіз важливо-

сті ознак показав, що найбільш значущими параметрами для класифікації є ентропія 

та довжина білих вертикальних і діагональних ліній на рекурентних діаграмах, а та-

кож детермінізм і ламінарність. Отримані результати можуть бути корисними для 

розробки алгоритмів аналізу ЕЕГ у портативних пристроях та застосувань у сфері 

нейроінтерфейсів і когнітивного тренування. 
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