«Cucremui Texnonorii» 6 (155) 2024 «System technologiesy
DOI 10.34185/1562-9945-6-155-2024-16
UDC 519.8:519.178

O. Maliienko, V. Turchyna
ANALYSIS OF THE IMPACT OF TASK PRIORITIZATION LISTS
ON THE POTENTIAL FOR AVOIDING ANOMALIES IN TASK SCHEDULING

Annotation. This paper addresses relevant issues related to the anomalous deterioration in
objective function values when attempting to improve the initial parameters in one of the dis-
crete optimization problems. The primary focus is on investigating the conditions under which
it is possible to prevent the occurrence of such anomalies. Contemporary scientific works de-
voted to schedule optimization and task prioritization management, particularly for location-
allocation problems arising in the fields of computer science, engineering, and operations
research, are reviewed. A priority dynamic redistribution algorithm is proposed, which al-
lows minimizing delays and ensuring efficient resource utilization during parallel task execu-
tion. An example of applying the algorithm is provided, and its effectiveness in preventing
anomalies.

Keywords: schedule theory, optimal orderings, location-allocation problems, discrete opti-
mization, anomalies, priority dynamic redistribution, scheduling algorithms, interruptions,
mathematical modeling.

In the modern world of technology, which is continuously evolving and integrating into
all areas of activity, effective task management is a key aspect of achieving high levels of
productivity. However, alongside the development of systems, numerous challenges arise in
their improvement and optimization, which require innovative mathematical approaches and
solutions. One of the most complex problems in this area is the anomalous deterioration of
objective function values when attempting logical improvements to the initial system parame-
ters.

Problem statement. The study of anomalous cases in discrete optimization problems,
particularly in constructing parallel optimal orderings, is often associated with determining
the conditions under which it is possible to prevent the occurrence of these anomalies [1].
Considering the generalization of the problem of minimizing the total task completion time,
an interesting question arises regarding the impact of interruptions on the value of the objec-
tive function [2].

Analysis of the latest research and publications. In recent decades, a large number of
scientific works have been devoted to schedule optimization and task prioritization manage-
ment in various fields such as computer science, engineering, and operations research. These
works emphasize the importance of ensuring efficient resource allocation and minimizing de-
lays in task execution. In particular, significant attention is paid to algorithms that allow dy-

© Maliienko O., Turchyna V., 2024

ISSN 1562-9945 (Print) 167
ISSN 2707-7977 (Online)

«CucremHi TexHogorii» 6 (155) 2024 «System technologies»
namic resource redistribution and account for changes in the execution environment in real
time.

One of the key studies is the work of Avinab Marahatta and co-authors [3], which pro-
poses a classification scheme for dynamic task scheduling in virtualized cloud data centers,
improving energy efficiency and task execution by dynamically redistributing resources and
adapting to changes in system load.

In [4], a review of 67 different task scheduling algorithms is conducted, particularly
those optimizing energy consumption in cloud environments. The advantages and disad-
vantages of various approaches, including dynamic task redistribution algorithms that consid-
er priorities and variable execution conditions, are discussed.

The purpose of the study. The purpose of this research is to develop and justify the ef-
fectiveness of a priority dynamic redistribution algorithm that prevents the occurrence of
anomalies in parallel task execution. By allowing interruptions and dynamic redistribution,
the algorithm aims to optimize task execution order, minimize delays, and ensure efficient
resource utilization. The task is to establish the conditions under which the proposed algo-
rithm guarantees the execution of more important tasks first, allows more prioritized tasks to
be placed in the leftmost permissible positions, and considers changes in the availability of
executors and the state of task execution in real time.

Presentation of the main material of the research. When studying anomalous cases,
questions often arise about determining the conditions under which it is possible to prevent
the occurrence of these anomalies. In particular, the study of the impact of interruptions on the
increase in the objective function value becomes interesting.

Let a directed graph G = (V,) be given, along with a priority list L = (iy, ..., 1)

and vertex weights T = (14, ..., T,,). We introduce additional initial conditions: constraints
on the ordering width with the set of values h; and the allowance for interruptions during

work execution [2]. The constructed parallel ordering should satisfy the priority list and have
a minimal length.

Statement. Allowing interruptions for some tasks in cases where anomalies exist helps
avoid their occurrence under the following conditions:

Priority: The priority list must be built according to the optimal priority list construction
algorithm; high-priority tasks can interrupt the execution of lower-priority tasks.

Interruption: An interrupted task can be resumed at any step, but according to the priori-
ty list.

Dynamic Actualization: At each step of task execution, work can be interrupted and
tasks can be redistributed.

Proof.

Priority. Let a priority list be given, built according to the optimal priority list construc-
tion algorithm. We will prove that this condition guarantees the execution of more important
tasks first. Suppose that a high-priority task (for example, task i) can interrupt a lower-priority
task (for example, task j). According to this condition, task i is always executed before task j

168 ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)

«Cucremni texuoorii» 6 (155) 2024 «System technologies»
if they are simultaneously available for execution. This means that a high-priority task will
never be blocked by a lower-priority task, which prevents delays in the execution of critically
important tasks.

Interruption. Consider the condition that an interrupted task can be resumed at any step,
but according to the priority list. We will prove that this allows more prioritized tasks to be
placed in the leftmost permissible positions. Let task i be interrupted by task j with a higher
priority. Since task i can be resumed later, but only after all higher-priority tasks have been
completed, this ensures that task i does not occupy the executor at a moment when it is possi-
ble to execute task j. Thus, interruptions allow more prioritized tasks to be placed in the left-
most permissible positions in the schedule, reducing the overall execution time and prevent-
ing anomalies.

Dynamic Actualization. Consider the condition that at each step of task execution, work
can be interrupted and tasks can be redistributed. We will prove that this condition accounts
for changes in the availability of executors and the state of task execution in real time. Sup-
pose task i is being executed, but at the current step, a higher priority task j appears. Dynamic
actualization allows the immediate suspension of task i and the assignment of resources to
execute task j. Thus, interruptions and task redistributions account for changes in the availa-
bility of executors and the state of task execution in real time, allowing for a prompt response
to changing conditions and avoiding delays. This also helps prevent anomalies by ensuring
efficient resource use and task execution in order of importance.

Condition 1 guarantees the execution of more important tasks first.

Condition 2 allows more prioritized tasks to be executed in the leftmost permissible po-
sitions [5].

Condition 3 accounts for changes in the availability of executors and the state of task
execution in real time. We will illustrate the fulfillment of these conditions with the following
example.

Example. Graph G is given (fig. 1),

L=1(1,2,3,45,67.8910), T=1(4,4221,3,421,7), h=3.

OBRONO
ONO @)
OO © @

Figure 1 - Graph &G

ISSN 1562-9945 (Print) 169
ISSN 2707-7977 (Online)

«CucremHi Texnonorii» 6 (155) 2024 «System technologies)

Table 1
Optimal ordering
1 1 1 1 4 4 8 8

2 2 2 2 5 6 6 6
3 3 7 7 7 7 9 10 |10 (10 |10 |10 |10 |10

Table 2
Optimal ordering with interruptions
1 1 1 1 4 4 7 9

2 2 2 2 5 7 8 8

3 3 7 7 6 6 6 10 |10 |10 |10 |10 |10 |10

The length of the ordering did not change, [= 14.

Apply the dynamic resource redistribution algorithm to solve this problem. Modify L,

using the optimal priority list construction algorithm.

Find the total task completion time for each of the graph paths:

L_s=5L =8l g=7L=41; =711, ="7.

Update the priority list: L' = (1,5,6,8,3,7,9,10,4,2).

Table 3
Optimal ordering using list L' and the possibility of interruptions

1 1 1 1 5 6 6 6 10 2 2 2
3 3 7 7 7 8 8 10 4
10 10 10 10 10 7 9 4 2

The length of the ordering is [= 12, which is 14.3% shorter than the initial result.

Let's take a closer look at the fulfillment of conditions 1-3 on the constructed ordering
from table 3.

Condition 1: task iy is interrupted by task i,, and task i~ is interrupted by task ig.
Condition 2. Find S (table 4), S (table 5) and the sets of allowable places for vertices iz

and i-.

170 ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)

«Cucremui Texnonorii» 6 (155) 2024 «System technologiesy

Table 4
Ordering S
1 1 1 1 4 4
2 2 5 6 6 6
3 3 7 7 7 7 9
10 10 10 10 10 10 10
8 8
Table 5
Ordering
10 10 10 10 10 10 10
3 3 7 7 7 7 9
8 8
1 1 1 1 5 6 6 6
4 4
2 2 2 2

u. = [5], i, = [3,7]. Task i5 is performed in the only allowable place. Task i, starts

execution at the leftmost allowable place due to the impossibility of executing higher priority
tasks at time t5, and after the interruption, it starts execution at the leftmost allowable place

according to the priority list.
Condition 3: task i is interrupted by task iy, while on the next step, task i, interrupts

task i, 5.

The pseudocode of the algorithm for solving this problem in Python:
#Priority Dynamic Redistribution Algorithm
#Initialization: Mark all executors as free
executors = [free for 1in range(total executors)]
tasks = priority queue #Assume this is a list of tasks sorted
by priority

while tasks:
#Assign work: Assign available task 1 to a free executor
for task in tasks:
if task.available:
for executor in executors:
if executor == free:
executor = task
task.assigned = True
break

#Redistribution: Check for higher priority tasks

for executor in executors:

ISSN 1562-9945 (Print) 171
ISSN 2707-7977 (Online)

«CucremHi Texnonorii» 6 (155) 2024 «System technologies)

if executor != free:
current task = executor
for task in tasks:
if task.priority < current task.priority and
task.available:
#Interrupt current task and assign higher
priority task
executor = task
task.assigned = True
current task.interrupted = True
break

#Update the list of tasks: remove completed tasks, update
availability

tasks = [task for task in tasks if not task.completed]
#Mark all free executors
for i in range (len (executors)) :
if executors[i].completed:
executors[i] = free
#End of Algorithm

Let's consider the operation of the algorithm step by step.

Initialization: All executors are initially marked as free.

Job Assignment: Iterate through the list of tasks (assumed to be sorted by priority) and
assign available tasks to free executors.

Redistribution: For each executor who is currently working on a task, check if a higher
priority task is available. If a higher priority task is found, interrupt the current task and assign
the higher priority task to the executor.

Task Update: Remove completed tasks from the list and update the availability of tasks
and executors.

Free Executors: Mark executors as free if they have completed their assigned tasks.

This pseudocode provides a clear and structured way to manage tasks based on their
priority and dynamically reassign executors to higher priority tasks as they become available.

Conclusions. The results obtained during the research demonstrate that using the priori-
ty dynamic redistribution of tasks significantly reduces the risk of anomalies in parallel order-
ing problems. The proposed algorithm ensures the execution of the most important tasks first
and allows them to be placed in the leftmost allowable positions. This ensures optimal re-
source utilization and minimizing total execution time. Dynamic task distribution updating
allows for real-time adjustments to executor availability and task execution possibilities, ena-
bling timely responses to changes in conditions to avoid delays. Thus, applying the proposed
approach provides an effective solution for parallel ordering problems, particularly in real-
time conditions.

Moreover, it is worth noting several important questions that require further research.

172 ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)

«Cucremni texuoorii» 6 (155) 2024 «System technologies»

Clarification of algorithm efficiency criteria. It is necessary to explore in more detail
which efficiency criteria should be considered when evaluating the performance of the priori-
ty dynamic redistribution in real-world systems. For example, it is essential to analyze how
the algorithm handles different types of anomalies and which parameters have the most signif-
icant impact on its effectiveness.

Adaptation of the algorithm to other problem types. It is worth considering the pos-
sibility of adapting the proposed algorithm to other types of discrete optimization problems
where anomalies arise. Specifically, this includes location-allocation problems with complex
constraints, which occur in various applied fields such as logistics, medicine and finance.

Investigation of the impact of unforeseen events. It is important to study how the
proposed algorithm responds to sudden changes in task execution conditions, such as the
emergence of new tasks or executor failures. Such studies could enhance the algorithm and
make it more adaptable to unforeseen events.

Integration with other optimization algorithms. Such as genetic algorithms, machine
learning, or deep analysis methods. This would enable the creation of hybrid algorithms that
could more effectively handle complex tasks.

Analysis of implementation costs. It is crucial to explore the implementation costs of
the proposed approach in real-world systems. This includes computational resources needed
to run the algorithm and the time required to adapt the algorithm to specific operating condi-
tions.

These further research directions will contribute both to new theoretical results for solv-
ing some classical discrete optimization problems and to the potential for effective application
to important practical tasks.

REFERENCES
1. Graham R. (1969) Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics. Vol. 17. PP. 416-429. DOI: 10.1137/0117039
2. Mamienko O.0., Koanenko €.0. (2024) [locnimkeHHS BIUIMBY TepepUBaHb HA BUHUK-
HEHHS aHOMaJlli y 3a/layax mapajielbHOro ynopsakyBaHHs. KomOiHaTopHi KoHQIrypamii Ta
ixni 3acrocyBanns. Bum. 26. C. 103-107.
3. Marahatta A., Pirbhulal S., Zhang F., Parizi R. M., Choo K.-K. R., Liu Z. (2021) Classifi-
cation-Based and Energy-Efficient Dynamic Task Scheduling Scheme for Virtualized Cloud
Data Center. IEEE Transactions on Cloud Computing. Vol. 9. PP. 1376-1390 DOI:
10.1109/TCC.2019.2918226
4. Ghafari, R., Kabutarkhani, F. H., Mansouri, N. (2022) Task scheduling algorithms for en-
ergy optimization in cloud environment: a comprehensive review. Cluster Comput. Vol. 25.
PP. 1035-1093 DOI: 10.1007/s10586-021-03512-z
5. Typuuna B.A., ®enopenxo H.K. (2011) Anropurmu noGyqoB ycix mapajieabHUX yHops-
KYBaHb 3a)1aH0'1' JOBXHWHU. IIutanus HpI/IKJ'Ia)IHO'f MaTeMaTHKHA 1 MaTeMaTUIHOTO MOIACJIHOBAH-

. C. 268-274.

Received 19.10.2024.
Accepted 25.10.2024.

ISSN 1562-9945 (Print) 173
ISSN 2707-7977 (Online)

«CucremHi Texnonorii» 6 (155) 2024 «System technologies)

AHnaniz énauey cnucKky npiopumemise 6UKOHAHHA 3A60AHD
HA MOMCTUGICMb YHUKHEHHA AHOMATITL Y 3a0a4ax ynopAOKy8aHH:

YV oaniti pobomi posenanymo akmyanvhi npodiemu, no8'sa3ani 3 AHOMATLHUM NO2IpULeH-
HAM 3HAYEeHb YiNbosoi pyHKYil npu cnpodax nOKpaweHHs NOYamKo8ux napamempis 6 0OHil i3
3a0au Oouckpemnoi onmumizayii. OcnosHa ysaea NpuoiieHa OO0CHIONCEHHIO YMO8, 3a AKUX
Moxcuge 3an00ieanta BUHUKHEHHIO MaKux anomanin. Posenadaromscs cyuacHi naykoei po-
bomu, npucesyeni onmumizayii po3Knadie i YnpaeiinHio npiopumemamu 3a80aHb, 30Kpema
0714 3a0a4 po3nooiny ma po3MileHHsl, Wo SUHUKAIOMb 8 2ANY35X KOMN'TOMepHUX HAyK, iHdice-
Hepii ma onepayiinux 00Ci0HCeHb. 3anPONOHOBAHO ANCOPUMM NPIOPUMEMHO20 OUHAMIYHO-
20 nepepo3nooiny, wo 00360J1A€ MIHIMIZY8aAMU 3aMPUMKU MA 3a6e3nedumu eqheKmusHe 8UKo-
PUCMANHA PecypcCié npu napaneibHoMy 8UKOHAHHI 3a60anb. Hasedeno npuxnao sacmocysan-
H5L ANI2OPUMMY ma 008e0eHO 11020 egheKMUSHICMs y 3anobieanHi BUHUKHEHHIO AHOMAILL.

Magienko Oabra OgexkcanapiBHa — acmipadT J{HIIPOBCHKOTO HAIIOHATBLHOTO YHIBEpCHUTE-
Ty iMeHi Onecst ['oHuapa.

Typuuna Bajsentuna AuapiiBHa — kagauaaT Gi3sMKo-MaTeMaTHIHUX HAYK, TOICHT, 3aBidy-
Ba4 kadenpu o0YMCITIOBAILHOT MAaTEMATHKH Ta MaTeMaTHYHOI KiOepHeTHKH JIHIPOBCHKOTO
HaIlloHANBHOTO YHiBepcuTeTy iMeHi Onecs ['oHuapa.

Olha Maliienko — Postgraduate Student of Oles Honchar Dnipro National University.
Valentyna Turchyna — Candidate of Physical and Mathematical Sciences, Associate
Professor, Head of the Department of Computational Mathematics and Mathematical
Cybernetics of Oles Honchar Dnipro National University.

174 ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)

