
«Системні технології» 6 (155) 2024 «System technologies»

ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)
167

DOI 10.34185/1562-9945-6-155-2024-16

UDC 519.8:519.178

O. Maliienko, V. Turchyna


ANALYSIS OF THE IMPACT OF TASK PRIORITIZATION LISTS

ON THE POTENTIAL FOR AVOIDING ANOMALIES IN TASK SCHEDULING

Annotation. This paper addresses relevant issues related to the anomalous deterioration in

objective function values when attempting to improve the initial parameters in one of the dis-

crete optimization problems. The primary focus is on investigating the conditions under which

it is possible to prevent the occurrence of such anomalies. Contemporary scientific works de-

voted to schedule optimization and task prioritization management, particularly for location-

allocation problems arising in the fields of computer science, engineering, and operations

research, are reviewed. A priority dynamic redistribution algorithm is proposed, which al-

lows minimizing delays and ensuring efficient resource utilization during parallel task execu-

tion. An example of applying the algorithm is provided, and its effectiveness in preventing

anomalies.

Keywords: schedule theory, optimal orderings, location-allocation problems, discrete opti-

mization, anomalies, priority dynamic redistribution, scheduling algorithms, interruptions,

mathematical modeling.

In the modern world of technology, which is continuously evolving and integrating into

all areas of activity, effective task management is a key aspect of achieving high levels of

productivity. However, alongside the development of systems, numerous challenges arise in

their improvement and optimization, which require innovative mathematical approaches and

solutions. One of the most complex problems in this area is the anomalous deterioration of

objective function values when attempting logical improvements to the initial system parame-

ters.

Problem statement. The study of anomalous cases in discrete optimization problems,

particularly in constructing parallel optimal orderings, is often associated with determining

the conditions under which it is possible to prevent the occurrence of these anomalies [1].

Considering the generalization of the problem of minimizing the total task completion time,

an interesting question arises regarding the impact of interruptions on the value of the objec-

tive function [2].

Analysis of the latest research and publications. In recent decades, a large number of

scientific works have been devoted to schedule optimization and task prioritization manage-

ment in various fields such as computer science, engineering, and operations research. These

works emphasize the importance of ensuring efficient resource allocation and minimizing de-

lays in task execution. In particular, significant attention is paid to algorithms that allow dy-


© Maliienko O., Turchyna V., 2024

«Системні технології» 6 (155) 2024 «System technologies»

ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)

168

namic resource redistribution and account for changes in the execution environment in real

time.

One of the key studies is the work of Avinab Marahatta and co-authors [3], which pro-

poses a classification scheme for dynamic task scheduling in virtualized cloud data centers,

improving energy efficiency and task execution by dynamically redistributing resources and

adapting to changes in system load.

In [4], a review of 67 different task scheduling algorithms is conducted, particularly

those optimizing energy consumption in cloud environments. The advantages and disad-

vantages of various approaches, including dynamic task redistribution algorithms that consid-

er priorities and variable execution conditions, are discussed.

The purpose of the study. The purpose of this research is to develop and justify the ef-

fectiveness of a priority dynamic redistribution algorithm that prevents the occurrence of

anomalies in parallel task execution. By allowing interruptions and dynamic redistribution,

the algorithm aims to optimize task execution order, minimize delays, and ensure efficient

resource utilization. The task is to establish the conditions under which the proposed algo-

rithm guarantees the execution of more important tasks first, allows more prioritized tasks to

be placed in the leftmost permissible positions, and considers changes in the availability of

executors and the state of task execution in real time.

Presentation of the main material of the research. When studying anomalous cases,

questions often arise about determining the conditions under which it is possible to prevent

the occurrence of these anomalies. In particular, the study of the impact of interruptions on the

increase in the objective function value becomes interesting.

Let a directed graph be given, along with a priority list

and vertex weights . We introduce additional initial conditions: constraints

on the ordering width with the set of values and the allowance for interruptions during

work execution [2]. The constructed parallel ordering should satisfy the priority list and have

a minimal length.

Statement. Allowing interruptions for some tasks in cases where anomalies exist helps

avoid their occurrence under the following conditions:

Priority: The priority list must be built according to the optimal priority list construction

algorithm; high-priority tasks can interrupt the execution of lower-priority tasks.

Interruption: An interrupted task can be resumed at any step, but according to the priori-

ty list.

Dynamic Actualization: At each step of task execution, work can be interrupted and

tasks can be redistributed.

Proof.

Priority. Let a priority list be given, built according to the optimal priority list construc-

tion algorithm. We will prove that this condition guarantees the execution of more important

tasks first. Suppose that a high-priority task (for example, task 𝑖) can interrupt a lower-priority

task (for example, task 𝑗). According to this condition, task 𝑖 is always executed before task 𝑗

«Системні технології» 6 (155) 2024 «System technologies»

ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)
169

if they are simultaneously available for execution. This means that a high-priority task will

never be blocked by a lower-priority task, which prevents delays in the execution of critically

important tasks.

Interruption. Consider the condition that an interrupted task can be resumed at any step,

but according to the priority list. We will prove that this allows more prioritized tasks to be

placed in the leftmost permissible positions. Let task 𝑖 be interrupted by task 𝑗 with a higher

priority. Since task 𝑖 can be resumed later, but only after all higher-priority tasks have been

completed, this ensures that task 𝑖 does not occupy the executor at a moment when it is possi-

ble to execute task 𝑗. Thus, interruptions allow more prioritized tasks to be placed in the left-

most permissible positions in the schedule, reducing the overall execution time and prevent-

ing anomalies.

Dynamic Actualization. Consider the condition that at each step of task execution, work

can be interrupted and tasks can be redistributed. We will prove that this condition accounts

for changes in the availability of executors and the state of task execution in real time. Sup-

pose task 𝑖 is being executed, but at the current step, a higher priority task 𝑗 appears. Dynamic

actualization allows the immediate suspension of task 𝑖 and the assignment of resources to

execute task 𝑗. Thus, interruptions and task redistributions account for changes in the availa-

bility of executors and the state of task execution in real time, allowing for a prompt response

to changing conditions and avoiding delays. This also helps prevent anomalies by ensuring

efficient resource use and task execution in order of importance.

Condition 1 guarantees the execution of more important tasks first.

Condition 2 allows more prioritized tasks to be executed in the leftmost permissible po-

sitions [5].

Condition 3 accounts for changes in the availability of executors and the state of task

execution in real time. We will illustrate the fulfillment of these conditions with the following

example.

Example. Graph is given (fig. 1),

.

Figure 1 - Graph

«Системні технології» 6 (155) 2024 «System technologies»

ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)

170

Table 1

Optimal ordering

1 1 1 1 4 4 8 8

2 2 2 2 5 6 6 6

3 3 7 7 7 7 9 10 10 10 10 10 10 10

The length is .

Table 2

Optimal ordering with interruptions

1 1 1 1 4 4 7 9

2 2 2 2 5 7 8 8

3 3 7 7 6 6 6 10 10 10 10 10 10 10

The length of the ordering did not change, .

Apply the dynamic resource redistribution algorithm to solve this problem. Modify ,

using the optimal priority list construction algorithm.

Find the total task completion time for each of the graph paths:

Update the priority list:

Table 3

Optimal ordering using list and the possibility of interruptions

1 1 1 1 5 6 6 6 10 2 2 2

3 3 7 7 7 8 8 10 4

10 10 10 10 10 7 9 4 2

The length of the ordering is , which is 14.3% shorter than the initial result.

Let's take a closer look at the fulfillment of conditions 1-3 on the constructed ordering

from table 3.

Condition 1: task is interrupted by task , and task is interrupted by task .

Condition 2. Find (table 4), (table 5) and the sets of allowable places for vertices

and .

«Системні технології» 6 (155) 2024 «System technologies»

ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)
171

Table 4

Ordering

1 1 1 1 4 4

2 2 2 2 5 6 6 6

3 3 7 7 7 7 9

10 10 10 10 10 10 10

 8 8

Table 5

Ordering

 10 10 10 10 10 10 10

 3 3 7 7 7 7 9

 8 8

1 1 1 1 5 6 6 6

 4 4

 2 2 2 2

 Task is performed in the only allowable place. Task starts

execution at the leftmost allowable place due to the impossibility of executing higher priority

tasks at time , and after the interruption, it starts execution at the leftmost allowable place

according to the priority list.

Condition 3: task is interrupted by task , while on the next step, task interrupts

task .

The pseudocode of the algorithm for solving this problem in Python:

#Priority Dynamic Redistribution Algorithm

#Initialization: Mark all executors as free

executors = [free for _ in range(total_executors)]

tasks = priority_queue #Assume this is a list of tasks sorted

by priority

while tasks:

 #Assign work: Assign available task i to a free executor

 for task in tasks:

 if task.available:

 for executor in executors:

 if executor == free:

 executor = task

 task.assigned = True

 break

 #Redistribution: Check for higher priority tasks

 for executor in executors:

«Системні технології» 6 (155) 2024 «System technologies»

ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)

172

 if executor != free:

 current_task = executor

 for task in tasks:

 if task.priority < current_task.priority and

task.available:

 #Interrupt current task and assign higher

priority task

 executor = task

 task.assigned = True

 current_task.interrupted = True

 break

 #Update the list of tasks: remove completed tasks, update

availability

 tasks = [task for task in tasks if not task.completed]

 #Mark all free executors

 for i in range(len(executors)):

 if executors[i].completed:

 executors[i] = free

#End of Algorithm

Let's consider the operation of the algorithm step by step.

Initialization: All executors are initially marked as free.

Job Assignment: Iterate through the list of tasks (assumed to be sorted by priority) and

assign available tasks to free executors.

Redistribution: For each executor who is currently working on a task, check if a higher

priority task is available. If a higher priority task is found, interrupt the current task and assign

the higher priority task to the executor.

Task Update: Remove completed tasks from the list and update the availability of tasks

and executors.

Free Executors: Mark executors as free if they have completed their assigned tasks.

This pseudocode provides a clear and structured way to manage tasks based on their

priority and dynamically reassign executors to higher priority tasks as they become available.

Conclusions. The results obtained during the research demonstrate that using the priori-

ty dynamic redistribution of tasks significantly reduces the risk of anomalies in parallel order-

ing problems. The proposed algorithm ensures the execution of the most important tasks first

and allows them to be placed in the leftmost allowable positions. This ensures optimal re-

source utilization and minimizing total execution time. Dynamic task distribution updating

allows for real-time adjustments to executor availability and task execution possibilities, ena-

bling timely responses to changes in conditions to avoid delays. Thus, applying the proposed

approach provides an effective solution for parallel ordering problems, particularly in real-

time conditions.

Moreover, it is worth noting several important questions that require further research.

«Системні технології» 6 (155) 2024 «System technologies»

ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)
173

Clarification of algorithm efficiency criteria. It is necessary to explore in more detail

which efficiency criteria should be considered when evaluating the performance of the priori-

ty dynamic redistribution in real-world systems. For example, it is essential to analyze how

the algorithm handles different types of anomalies and which parameters have the most signif-

icant impact on its effectiveness.

Adaptation of the algorithm to other problem types. It is worth considering the pos-

sibility of adapting the proposed algorithm to other types of discrete optimization problems

where anomalies arise. Specifically, this includes location-allocation problems with complex

constraints, which occur in various applied fields such as logistics, medicine and finance.

Investigation of the impact of unforeseen events. It is important to study how the

proposed algorithm responds to sudden changes in task execution conditions, such as the

emergence of new tasks or executor failures. Such studies could enhance the algorithm and

make it more adaptable to unforeseen events.

Integration with other optimization algorithms. Such as genetic algorithms, machine

learning, or deep analysis methods. This would enable the creation of hybrid algorithms that

could more effectively handle complex tasks.

Analysis of implementation costs. It is crucial to explore the implementation costs of

the proposed approach in real-world systems. This includes computational resources needed

to run the algorithm and the time required to adapt the algorithm to specific operating condi-

tions.

These further research directions will contribute both to new theoretical results for solv-

ing some classical discrete optimization problems and to the potential for effective application

to important practical tasks.

REFERENCES

1. Graham R. (1969) Bounds on multiprocessing timing anomalies. SIAM Journal on Applied

Mathematics. Vol. 17. PP. 416–429. DOI: 10.1137/0117039

2. Малієнко О.О., Коваленко Є.О. (2024) Дослідження впливу переривань на виник-

нення аномалій у задачах паралельного упорядкування. Комбінаторні конфігурації та

їхні застосування. Вип. 26. С. 103-107.

3. Marahatta A., Pirbhulal S., Zhang F., Parizi R. M., Choo K.-K. R., Liu Z. (2021) Classifi-

cation-Based and Energy-Efficient Dynamic Task Scheduling Scheme for Virtualized Cloud

Data Center. IEEE Transactions on Cloud Computing. Vol. 9. PP. 1376-1390 DOI:

10.1109/TCC.2019.2918226

4. Ghafari, R., Kabutarkhani, F. H., Mansouri, N. (2022) Task scheduling algorithms for en-

ergy optimization in cloud environment: a comprehensive review. Cluster Comput. Vol. 25.

PP. 1035-1093 DOI: 10.1007/s10586-021-03512-z

5. Турчина В.А., Федоренко Н.К. (2011) Алгоритми побудов усіх паралельних упоряд-

кувань заданої довжини. Питання прикладної математики і математичного моделюван-

ня. С. 268-274.
Received 19.10.2024.

Accepted 25.10.2024.

«Системні технології» 6 (155) 2024 «System technologies»

ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)

174

Аналіз впливу списку пріоритетів виконання завдань

на можливість уникнення аномалій у задачах упорядкування

У даній роботі розглянуто актуальні проблеми, пов'язані з аномальним погіршен-

ням значень цільової функції при спробах покращення початкових параметрів в одній із

задач дискретної оптимізації. Основна увага приділена дослідженню умов, за яких

можливе запобігання виникненню таких аномалій. Розглядаються сучасні наукові ро-

боти, присвячені оптимізації розкладів і управлінню пріоритетами завдань, зокрема

для задач розподілу та розміщення, що виникають в галузях комп'ютерних наук, інже-

нерії та операційних досліджень. Запропоновано алгоритм пріоритетного динамічно-

го перерозподілу, що дозволяє мінімізувати затримки та забезпечити ефективне вико-

ристання ресурсів при паралельному виконанні завдань. Наведено приклад застосуван-

ня алгоритму та доведено його ефективність у запобіганні виникненню аномалій.

Малієнко Ольга Олександрівна – аспірант Дніпровського національного університе-

ту імені Олеся Гончара.

Турчина Валентина Андріївна – кандидат фізико-математичних наук, доцент, завіду-

вач кафедри обчислювальної математики та математичної кібернетики Дніпровського

національного університету імені Олеся Гончара.

Olha Maliienko – Postgraduate Student of Oles Honchar Dnipro National University.

Valentyna Turchyna – Candidate of Physical and Mathematical Sciences, Associate

Professor, Head of the Department of Computational Mathematics and Mathematical

Cybernetics of Oles Honchar Dnipro National University.

