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Abstract. This article explores the potential of using generative artificial intelligence (AI) for
software testing, reflecting on both the advantages and potential drawbacks of this emerging
technology. Considering the vital role of rigorous testing in software production, the authors
ponder whether generative AI could make the testing process more efficient and comprehensive,
without the need to increase resources. The article delves into the current limitations of this
technology, emphasizing the need for continuous exploration and adaptation. It concludes with
a summation of potential innovative solutions and avenues for future investigation. The paper
encourages discussions surrounding the question of fully automated testing and the role of hu
man specialists in the future of QA. It ultimately provides a thought provoking reflection on the
intersection of emerging technologies, and their societal impacts.
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Statement of the problem. In the previous few years there was a significant
development in the pre-trained generative AI based on large language models
(LLMs) with transformers and the services built upon them, OpenAI’s ChatGPT,
Google’s Gemini, Anthropic’s Claude, GitHub Copilot, Amazon CodeWhisperer and
others. However, there remain several challenges and uncertainties regarding the
effective integration of generative Al into software testing frameworks. This includes
issues such as ensuring the reliability and accuracy of generated test cases, adapting
Al algorithms to diverse software environments, and addressing ethical concerns
surrounding autonomous testing systems. The following questions remain unan-
swered. At this stage of their development, what can GenAl on LLMs with trans-
formers bring to software testing, and what can be expected from their further ad-
vancement? For which software testing tasks can GenAl on LLMs with transformers
be used?

Analysis of recent studies and publications. Considering that GenAl on
LLMs with transformers is an emerging topic [1-3], the number of scientific articles
on the use of this type of GenAl in software testing is relatively small compared to
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more developed topics in the field of information systems. In the work [3] the au-
thors note that application of AI/ML has a long history in software engineering (SE)
research. However, the use of GenAl specifically, is a more emerging topic. While the
promise of GenAl has been acknowledged for some time, progress in the research ar-
ea has been rapid. GenAl was not a prominent research area in SE until 2020. Follow-
ing the recent improvements in the performance of these systems, especially the re-
lease of services such as GitHub Copilot and ChatGPT-3, research interest has now
surged across disciplines, including SE. At the present stage of development of the
considered models, there is a relatively rapid (a couple of times a year) growth in the
number of model parameters, the volume of data used for their training, and the size
of the model context. This leads to rapid growth in the capabilities of the models.
Thus, this topic can be characterized as fast-changing. In connection with this, in a
work [3] devoted to the analysis of existing publications for mid-2023, it is noted
that: “A comprehensive and systematic review might not be suitable for research on
GenAl in software development at the time this research being conducted”. The au-
thors further justify the use of preprints and other non-peer-reviewed works: “First-
ly, research work is rapidly conducted and published on the topic, hence rendering
the findings of a comprehensive review probably outdated shortly after publication.
Secondly, we found a lot of relevant work as gray literature from non-traditional
sources such as preprints, technical reports, and online forums. These sources may
not be as rigorously reviewed or validated as peer-reviewed academic papers, making
it difficult to assess their quality and reliability. Thirdly, we would like to publish the
agenda as soon as possible to provide a reference for future research. A systematic
literature review would consume extensive effort and time, which might be obsolete
by the time the review is complete”. They suggest conducting a literature review as
follows: “Our strategy is to conduct focused, periodic reviews to capture the most
current and relevant information without the extensive resource commitment of a
comprehensive review. This approach allows for agility in keeping up with the latest
developments without claiming comprehensiveness and repeatability” [3]. In this
paper, in addition to the literature review, focus group surveys are conducted: “We
conducted four structured working sections as focus groups to identify, refine, and
prioritize Research Questions on GenAl for SE... ... All participants are SE researchers
who have experience or interest in the topic...”. It is noted: “Almost all of the exist-
ing studies on the topic (e.g. “[13][14][15]”) are mostly experimental studies and thus
do not take into consideration the industrial context. Therefore, how GenAl models

deal with real-world software quality issues remains a mystery. We need more real-
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world case studies and industrial examples to understand the effectiveness of vari-
ous tasks of SQA with GenAl. Moreover, it would be interesting to study how well
GenAl enhances the productivity of SQA professionals” [3]. Because of what was
stated above and the practical nature of the selected theme (the topic is mostly prac-
tical, so focus groups from industry specialists would be much better), I used meet-
ings and webcasts of testing industry professionals as a kind of focus groups to ex-
plore ideas for potential opportunities and challenges when adopting GenAl in soft-
ware testing activities [10 - 12].

Purpose of the study. The purpose of this study is to explore the capability of
GenAl integrated with transformers within Large Language Models to tackle distinct
challenges encountered in software testing, such as test case generation, bug predic-
tion, and test data synthesis. Through an examination of existing literature and in-
sights from domain experts regarding the implementation of GenAl with transform-
ers in software testing contexts, this research aims to formulate pertinent inquiries.
These critical questions will serve as a framework for discussions concerning the
contemporary role of advanced Generative Al in augmenting and refining software
testing methodologies.

Statement of the main research material. As an introduction in [4] authors
state that software testing, an integral part of the development cycle. However, au-
tomated software testing can be challenging, and necessitates a high level of tech-
nical acumen. There is significant expertise required to appropriately test software,
as evidenced by the existence of test engineers/architects. Furthermore, software
testing and the writing of software tests can be repetitive, as Hass et al. note [16]. It's
important to acknowledge the crucial role of testing in software production. Testing
isn't just vital for ensuring software quality; it also plays a significant role in refac-
toring or transitioning between different project types (proof of concept, MVP, etc.).
Having test coverage is especially crucial when working on projects using an Agile
approach. During refactoring and migrations, it's essential to verify that functionali-
ty and data remain intact throughout the process. In the case of software, testing
serves as a similar verification tool. To ensure reliable verification, having a suffi-
cient level of test coverage is necessary. Insufficient test coverage can lead to limita-
tions in the ability to make changes, consequently affecting project development. It
might also demand extensive and comprehensive manual testing, thereby slowing
down project progress. Creating adequate test coverage for a project, especially
maintaining the functionality of tests while the project undergoes continuous
changes during its active development phase, is a labor-intensive task.
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Software testing plays a crucial role. Despite this, many projects either aren't
tested or are tested inadequately. This is attributable to the inherent complexity of
testing itself. Approaching testing as "exhaustive," meant to cover all paths in the
code or all possible input data, has highlighted that achieving complete software
testing is impossible under these conditions. The sheer volume of potential input
data, code execution paths, and system states is immense, rendering “exhaustive”
testing theoretically impossible. As a result, in testing, it's necessary to establish a
"stopping criterion," reaching which is regarded as a tradeoff between achieving as
comprehensive testing as possible and the resources allocated for testing within the
project's scope. However, the task of testing a project remains complex and unat-
tainable in its entirety. There's hope that generative AI might assist in conducting
more comprehensive testing without increasing the resources dedicated to testing.

Generative Al based on large language models with transformers is a new tech-
nology. We're only beginning to understand its capabilities and potential applica-
tions.

The primary tasks of testing can be generally described as follows:

1. Requirements analysis

2. Creating meaningful tests

3. Achieving code coverage targets

4. Maintaining the test suites

5. Documenting

When performing the aforementioned tasks, a human specialist encounters the
following difficulties:

1. Requires a lot of effort

2. Requires a lot of time

3. Overwhelming for a person

Often, tests and test data created for testing are very similar from one test to
another. During active project development and intensive changes to its codebase, a
significant amount of effort and time are required to maintain the functionality of
tests. Such work appears preferable for automation. However, automation based on
predefined procedures does not yield the desired effect. It seems possible that gen-
erative Al based on LLM with transformers at this stage of development could help
solve these tasks. It can be assumed that generative Al might assist in the following
tasks:

» Requirements analysis.

» Generating test plans.
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» Generating test scenarios.

 Generating mocks.

» Generating test data.

 Extending and supplementing existing test sets.

» Maintaining the relevance of tests.

 Defect detection and prediction.

» Reducing maintenance cost by eliminating redundant tests.

» Bug reports writing.

» Generating documentation.

What advantages (capabilities) of applying generative Al can be expected:

« "Self-healing” of test suites when changes are made to the source code.

» Generating tests in the background or without using resources designated for
development.

» Analysis of the user interface.

« Improving the productivity of human specialists.

» Generating tests from models or data description languages.

» Generating tests from informal descriptions, documentation written in natu-
ral languages, or audio descriptions.

e Optimizing test suites.

However, at this stage of generative Al development, attempting to use it
brings some challenges:

 The field is rapidly evolving. Approaches and tools developed might become
outdated before their completion with the publishing of more advanced models.

» High variability in generated tests (Deterministic vs. Probabilistic).

« Incorrect code generation.

« Inconsistent/Unreliable output.

 Performance issues due to reliance on external systems.

» Costs associated with using generative Al services.

« Project code exposure when using external services, which might be unsuita-
ble for certain cases.

One of the problems in generating tests using LLM is the probabilistic nature of
content generation. While test cases and the source code of applications and tests
themselves have a deterministic nature, LLMs built on transformers rely on a proba-
bilistic model. This inherent probabilistic nature poses complexity in using this type
of generative Al in tasks related to code generation. Additional efforts are required
in post-processing the results either by a human or possibly even using the same
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generative Al, not for generating but for analyzing the outcome, compiling, or
checking for functionality. There might be a need for an additional step in code gen-
eration, asking the generative Al model to correct identified errors or mismatches.
This process demands the development of additional criteria for the generated code
to meet the given task. It involves work on selecting prompts for the model (prompt
engineering), constructing a multi-step content generation system. However, due to
the probabilistic model [5], possible model hallucinations [6], obtaining the expected
result remains unguaranteed and requires verification by a human. You can see an
example below where Figure 1 and Figure 2 contain different tests generated by
ChatGPT 3.5 from the same prompt.

y () =>{
, () == {
passwordLength =

generatedPassword = (passwordL

(generatedPassword.length). (passwordLength);

generatedPassword =

lowerRegex =

upperRegex =

numberRegex =

(lowerRegex. (generatedPassword) ).
(upperRegex. (generatedPassword)).

(numberRegex. (generatedPassword)) .

generatedPassword =

(generatedPassword.length).

Figure 1 - Case 01
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y () =>{
y () =>{

passwordLength =

generatedPassword = (passwordL

(generatedPassword.length). (passwordLength);

generatedPassword =

(generatedPassword.length).

generatedPassword =

lowercase
uppercase
numbers =

pool = lowercase + uppercase + numbers;

i = 0; i < generatedPassword.length; i++) {

(pool. (generatedPassword[i])). (

generatedPassword =

Figure 2 - Case 02

The paper [2], however, notes that software testing appears to be in a better po-
sition regarding the impact of inaccuracies in the generated test code, compared to
business logic code generation: “However, there have been concerns about the cor-
rectness and reliability of the code generated by LLMs, as some studies have shown
that the code generated by LLMs may not always be correct, or may not meet the ex-
pected software requirements. By comparison, when LLMs are used for software test-
ing tasks, such as generating test cases or validating the correctness of software be-
havior, the impact of this problem is relatively weaker. This is because the primary
goal of software testing is to identify issues or problems in the software system, ra-
ther than to generate correct code or meet specific software requirements. At worst,
the only consequence is that the corresponding defects are not discovered. Further-
more, in some cases, the seemingly incorrect outputs from LLMs may be beneficial
for testing corner cases in software and can help uncover defects. Taken in this
sense, we think the LLMs are a natural match with software testing”.
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Thus, the question arises whether, at this stage of generative Al development,
it is possible to achieve automatic generation of a sufficiently complete set of tests
and whether it should be pursued. Or should the current goal be to build a generative
Al - human system using Al as an assistant? Some projects declare and attempt to
move towards automated testing. For example, projects like Pythagora [7],

TestCraftApp [8]. It can be expected that advancing the use of generative Al for test-

ing will enhance test coverage, improve the cost-effectiveness ratio of testing, and
expand the implementation of testing practices among companies and projects.

At the current level of development, automated creation of acceptable, not to
mention fully covered, tests are rather impossible. It seems more appropriate to aim
for test creation in cooperation with a human (developer) in assistant mode. At-
tempting complete automation might result in significant resource expenditure
without achieving an acceptable outcome. It seems reasonable to start with a hu-
man-driven Al assistant, while further continuing to create a framework for as com-
plete and comprehensive test automation as possible. Such paid platforms exist, cre-
ated even before the use of Al on LLM.

At present, it can be stated that generative Al does not replace a tester but ra-
ther serves as a force multiplier, a "new electricity,” as noted by the renowned ma-
chine learning expert Andrew Ng [9].

Efforts should also be directed towards creating a bridge (synergy) between Al
and the practices and knowledge already established by humans (human specialists)
in QA. Generative Al may help achieve greater efficiency in testing, but human in-
volvement and knowledge remain critical for defining testing objectives and evaluat-
ing results.

It's interesting to note that many anticipated that the emergence of Al would
allow humans to engage in creativity by eliminating routine tasks. However, it ap-
pears that, on the contrary, LLMs handle creative tasks better than tasks requiring
attention to details and precision. It's possible that even at the highest available lev-
el of generative Al development, we might end up with an analog of a human spe-
cialist with inherent issues in human-to-human interaction, such as precise task set-
ting (already emerging in prompt engineering and might remain unsolved in the fu-
ture), understanding the task and its execution process by the performer in their own
way. There might be incomplete or low-quality task execution (reports are already
emerging that existing models gradually provide less comprehensive answers over
time, indicating a sort of laziness in task execution).

Below are emerging questions that seem worth exploring.
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Utilizing for context and processing not only the source code of a program but
also existing documentation, both human-readable and formal documentation, DSLs
(e.g., OpenAl) or formal service descriptions (e.g., protobuf). It might even involve
the preliminary generation of documentation using Al as an additional supporting
step. Perhaps an additional source in some generalized, processed and less formal
form than the application source code, which the documentation is, will be useful in
the current implementation of generative Al (LLM with transformers) to achieve bet-
ter results.

Prompt engineering.

Fine-tuning the model specifically as a testing specialist.

How to best feed source code into the model?

Is it preferable to use and develop models with larger prompt token limits? One
significant issue with using a large prompt size is that the model may forget parts of
the prompt.

Alternatively, using retrieval augmented generation (RAG), or perhaps models
fine-tuning on project artifacts, might yield a more suitable result.

Another practical question regarding generative Al is whether to lean towards
more powerful proprietary models or use even smaller open-source models, possibly
with fine-tuning or RAG, to achieve the desired outcome.

Findings. This article explores the potential of using generative Al for software
testing, reflecting on both the advantages and potential drawbacks of this emerging
technology. To provide the above analysis a review of existing publications was con-
ducted. For initial assessments of interactions with LLM, the ChatGPT version 3.5
service and API access to the GPT 3.5 and GPT 4 models were used.
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BukopucmaHHs 2eHepamueHozo ulmy4Ho20 iHmeJieKkimy 6 mecmyeaHHi
npozpamHozo 3abe3neueHHs

YV pobomi docnidxucyemvcs nomeHuian 8UKOPUCMAHHS 2eHEPAMUBHO20 UWIMYYHO20
inmenekmy (GenAl) Ha ocHoai 8enukux mosHux modeneti (LLM) 3 mpauchopmepamu ons
NOKpauleHHs pi3HUX Acnekmis mecmysaHHsi NPO2PAMHO20 3abe3neueHHsl. AKYeHm po-
OUMBCS HA MOMCIUBUX NPAKMUUHUX 3ACMOCYBAHHSX | NpoOiemMax, ujo 8UHUKAIOMb Y YUX
Hosux nioxodax. BusHaueHO npobnemu mecmyeaHHs i nomeHuian zeHepamugHozo IIII
0J11 MOXCTIUBO20 iX 8UpIIEHHS AO0 3HUMEHHS IX 8NUBY HA 8e0eHHS NPoeKmie npozpam-
Hux cucmem. Xoua zeHepamugHuti IIII Ha daHoMYy emany po36umky He € N0BHOW 3aMi-
HOK Mecmy8albHUKaM-11005M, 8iH NPONOHYE 3HAUHI NepCneKmueu K nomyxcHuii dono-
MIXCHUT IHCMpyMeHm, IKUli Moxce mpaHcgopmysamu npakmuku mecmysaHHs. Ouiky-
8AHUMU hepesazamu € "camosulikogHi" mecmu, ki adanmywmascsi 00 3MiH K0dy; 2eHe-
pauiss mecmis y (ho0HOBOMY pexcuMi; MOXIUBICMb 2eHepysamu mecmu 3 pi3Hux oxcepen
(modeneti, onucie npupodHow M08010, Heo@iyilinoi dokymeHmauii), i 8 pewmi-pewm —
nidsuuieHHss NpoOyKMUBHOCMI npayi mecmyeaibHUKi8. 3a3HaAUeHO BUKIUKU BUKOPUC-
maHHs 2eHepamuerozo III Ha sequKkux MO8HUX MOdesix 3 mpaHcopmepamu.
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