«CucreMHi TexHonorii» 5 (148) 2023 «System technologies»
DOI 10.34185/1562-9945-5-148-2023-01
UDC 004.4°6

0.0. Zhulkovskyi, I.I. Zhulkovska, V.V. Kostenko, O.F. Bulhakova
RESEARCH ON SYNCHRONIZATION AND DATA PROTECTION PROBLEMS
IN IMPLEMENTING MULTITHREADED PROGRAMS

Abstract. The issue of shared data usage by threads is especially relevant in modern multi core
and multiprocessor systems. The main problems of implementing multithreaded programs are
race conditions, deadlocks, and thread starvation. The aim of the work is to solve the problem of
thread racing in multithreaded calculations of resource intensive tasks with parallel access to
shared data using appropriate synchronization mechanisms, such as mutexes. A multithreaded
algorithm for implementing a typical task of processing large data arrays with protection of the
critical area in concurrent programs running on multiprocessor and multi core systems has been
developed and researched.

Keywords: multithreaded computing, parallel programming, thread racing, synchronization
mechanisms, mutexes.

Introduction. Urgent problems of modern development of processes and tech-
nologies require constant improvement of computer equipment, efficient use of its
resources, processing of large volumes of data, and support for the growing require-
ments of modern information systems.

One of the approaches to address the mentioned problems is the use of multi-
processor and multi-core computing systems, where multiple physical or logical
cores can be efficiently utilized, ensuring faster and more productive parallel solu-
tions to specific resource-intensive tasks [1]. Software for computers is adapted and
refined to utilize such systems. Parallel techniques, such as parallel algorithms, par-
allel databases, and parallel programming, are becoming increasingly important to
ensure optimal system performance. Big data processing, training, and implementa-
tion of complex artificial intelligence algorithms, especially deep learning, have also
become integral to many industries. Moreover, multithreaded computing remains a
key technology in the powerful video game programming industry with high-quality
graphics, the Internet of Things (IoT), and helps solve various tasks in many sectors.

Thus, researching synchronization methods and resource management in mul-
tithreaded environments, developing new methods and tools for parallel program-

© Zhulkovskyi 0.0., Zhulkovska I.I., Kostenko V.V., Bulhakova O.F., 2023

ISSN 1562-9945 (Print) 3
ISSN 2707-7977 (Online)



«CucreMHi Tex”onorii» 5 (148) 2023 «System technologies»

ming with the creation of efficient multithreaded cross-platform programs, and op-
timizing algorithms and architectures for scalable computations are relevant tasks.

Literature Review. Multithreading is a property of a platform (e.g., an operat-
ing system, virtual machine, etc.) that allows a process created by the operating sys-
tem to consist of several threads that are executed "in parallel’, i.e., without a fixed
order in time. During the execution of some tasks, such a distribution can achieve
more efficient use of the computing machine's resources [2].

Full parallel execution of tasks is possible only in a multiprocessor (or multi-
core) system. In the case of a single-processor multitasking system, processes are
actually executed sequentially - here pseudo-parallel execution is used, creating the
appearance of parallel work of several processes [2].

From the user's perspective, a process is an instance of a program during exe-
cution, and threads are branches of the program that are executed "in parallel".
When one program performs many tasks, supporting multiple threads within one
process allows distributing responsibility for different tasks among different threads,
as well as increasing performance. Furthermore, tasks often need to exchange data,
use shared data, or the results of other tasks. Threads within a process provide this
capability, as they use the address space of the process to which they belong [2].

A thread can be in one of three states: executing, runnable, and waiting or
blocked.

A multithreaded system can be implemented with scalability. For example, in
parallel processing, the number of threads created can adapt to the number of pro-
cessor cores in the system, allowing the program to accelerate within certain limits,
fundamentally without changing its code.

When threads need to interact with each other or work with shared data, multi-
threading problems can arise, most of which are illustrated by the following classic
tasks: about dining philosophers, about a sleeping barber, about smokers, about
readers-writers, and others [2, 3].

The main problems of implementing multithreaded programs related to thread
synchronization are [4-6]:

— race conditions, when two or more threads try to simultaneously access the
same data or system resources without proper control, which can lead to unpredicta-
ble results;

— deadlocks, when two or more threads mutually block each other, waiting for
mutual unlocking, as a result of which the program seems to freeze;

- thread starvation, when one thread is given excessive access to resources,

4 ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)



«CucreMHi TexHonorii» 5 (148) 2023 «System technologies»

and other threads suffer from insufficient access to these resources.

Research Objective. The aim of this study is to solve the problem of thread
racing in multithreaded calculations of resource-intensive tasks with parallel access
to shared data using appropriate synchronization mechanisms, such as mutexes.

To achieve this goal, the following tasks are formulated: development of a mul-
tithreaded algorithm for implementing a typical task of processing large data arrays
with protection of the critical area using synchronization primitives - mutexes; re-
search of the performance of the developed algorithm with a significant amount of
processed data and a variable number of computing threads; development of a con-
cept for further application of effective approaches to data protection in concurrent
programs implemented on multiprocessor and multi-core systems.

Research methodology and results. In this work, the problem of race condi-
tion is explored - an error in designing a multithreaded system where the program's
operation depends on the order of code execution. Since this error is a «heisenbug»,
it can manifest randomly at different times, making it unpredictable and challenging
to analyses, detect, and correct due to its variable behaviour.

The issue of shared data usage by threads is especially relevant in modern mul-
ti-core and multiprocessor systems, where many threads compete for access to
shared resources, such as memory or files.

Research in this area aims to develop synchronization algorithms that allow
threads to interact with shared data without conflicts and ensure the program's cor-
rect execution. It's also essential to optimize access to shared resources to ensure
efficiency and speed of program execution. This issue is crucial for software develop-
ers as it allows efficient use of modern computing systems' capabilities and creates
high-performance and reliable applications that can operate under intense resource
competition.

When different threads have access to shared data, especially modifying them,
synchronization of such access is required.

The thread race problem can be solved using synchronization and appropriate
synchronization mechanisms, such as mutexes, conditional variables, atomic opera-
tions, and semaphores [2, 3].

Mutexes allow blocking access to shared data to one thread at a particular time.
The thread that first locks the mutex gets access to the data, and other threads wait
until the mutex is released.

When designing a program to reduce thread conflict, immutable design can
avoid the race condition. That is, it's desirable to avoid shared access to mutable da-

ISSN 1562-9945 (Print) 5
ISSN 2707-7977 (Online)



«CucreMHi Tex”onorii» 5 (148) 2023 «System technologies»

ta from multiple threads or use immutable objects and data.

The choice of a specific method depends on the task and context.

Consider the thread race problem by solving a typical task of finding the sum of
elements of a massive array in multithreaded mode.

The algorithm for solving this problem is implemented in C++ in the Microsoft
Visual Studio 2022 IDE using the std::vector class - a dynamic array from the stand-
ard STL (Standard Template Library), which provides a convenient and safe way to
manage memory and array size.

The program generates a large array of integers and uses a user-specified num-
ber of threads for parallel calculation of the sum of array elements. The std::thread
class is used to create and manage threads in the program [7]. Each thread is respon-
sible for a specific segment of the array, for which it calculates the sum of elements
in a specially developed function. After the calculations are completed, the program
displays the total sum and execution time.

To avoid thread races when several threads simultaneously try to access a
shared variable storing the sum of array elements, the std::mutex class is used. The
mutex ensures the correct calculation of the sum of the given array elements. In this
program, to simulate a more significant mutex capture load, the mutex was captured
on each iteration of the sum accumulation loop. Of course, in practice, using such an
approach is justified only for experimental purposes.

For the experiments, the following PC infrastructure was used: Intel
Core i7-12700H (14 cores, 2.3 GHz / 4.7 GHz); Goodram DDR4 (16 GB)x2 = 32 GB;
Microsoft Windows 10; IDE Microsoft Visual Studio C++ 2022.

The size of the output array varied in the range from 100 million to 1 billion el-
ements.

Fig. 1 presents the results of the implementation of the described program
without blocking the critical area with a mutex, i.e., with the thread race problem
and a deliberately incorrect result of the sum calculation.

As can be seen, with an increase in the size of the output array, the computa-
tion time significantly increases, while splitting the program into separate computa-
tional threads contributes to a noticeable increase in its performance. For example,
with an increase in the array size in the range of 103-10° the program execution
time increases by 6—7 times in multithreaded (2-14 threads) and ten times in single-
threaded implementation. The use of a multithreaded algorithm instead of a tradi-
tional single-threaded one provides a 1.5-2 times increase in program execution
speed, depending on the array size. It should be noted that the results mentioned are

6 ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)



«CucreMHi TexHonorii» 5 (148) 2023 «System technologies»

merely informative, as they were obtained without using mechanisms to avoid
thread races, and the sum calculation here is most likely incorrect.

250
200 m | thread
gﬁ 150 B 2 thread
2 5 thread
=100
= m 10 thread
50 W 14 thread
0

1E+08 2E+08 5E+08 8E+08 1E+09
Array size
Figure 1 — Dependence of the computation time of the multithreaded program
on the size of the output array (without blocking the critical area)

In Fig. 2, the results of the implementation of the described program are pre-
sented, addressing the thread race problem by blocking the critical area with a

mutex, i.e., obtaining correct calculation results.

70
60 /’ —o—1 thread
20 A~ -m2thread
3 40 S //
g = // ‘ 5 thread
F >
20 - ,\/ ——10 thread
10 %77-4- —+ 14 thread
0 +— =¥ = :

0E+00 3E+08 5E+08 8E+08 1E+09
Array size
Figure 2 — Dependence of the computation time of the multithreaded program
on the size of the output array (with blocking the critical area)

As can be observed, when solving the thread race problem in the considered
task, with an increase in the array size in the range of 102-10° the program execu-
tion time increases approximately tenfold. Increasing the number of used threads for
parallel calculations with mutex capture on each iteration of the sum accumulation

ISSN 1562-9945 (Print) 7
ISSN 2707-7977 (Online)



«CucreMHi Tex”onorii» 5 (148) 2023 «System technologies»

loop also leads to a noticeable slowdown in program execution. For example, when
increasing the number of threads from 2 to 14, the program execution time increases
approximately four times, regardless of the output array size.

Each time a thread captures a mutex, other competing threads must wait until
the current «owner» of the mutex releases it. The more threads there are, the more
situations can arise where threads wait for access to the mutex, affecting the overall
program execution time. The more cores in the processor, the more intense the
competition for access to the mutex becomes. Additionally, when threads compete
for processor time, scheduling operations can cause delays due to context switching
between threads.

To improve performance with many threads, it is desirable to consider alterna-
tive methods in the future, such as using atomic operations, etc.

Also, promising directions are considered to be the use of special tools, for ex-
ample, ROMP [8], DataRaceBench [9], and new approaches to detecting thread races
based on deep neural network models [10].

Conclusions. As a result of the work, a multithreaded algorithm was developed
to implement a typical task of processing extremely large data arrays with protection
of the critical area to prevent the thread race problem using mutexes; the perfor-
mance of the developed algorithm was investigated with a significant amount of
processed data (10%-10° elements) and a variable (1-14) number of computing
threads; a concept was developed for the further application of effective approaches
to data protection in concurrent programs implemented on multiprocessor and mul-
ti-core systems.

It was established that solving the thread race problem in the considered task
on a modern PC with an Intel Core i7-12700H processor, with an increase in the ar-
ray size in the range mentioned above, slows down the program execution approxi-
mately tenfold. Increasing the number of used threads from 2 to 14 during this slows
down the application implementation approximately four times, regardless of the
amount of processed data.

REFERENCES
1. Almeida S. An Introduction to High Performance Computing / S. Almeida // Inter-
national Journal of Modern Physics A. — 2013. — vol. 28, no. 22n23, 1340021, p. 1-9.
https://doi: 10.1142/s0217751x13400216
2. Tanenbaum A. S. Modern Operating Systems / A. S. Tanenbaum, H. Bos. — New
Jersey : Prentice Hall Press, 2014. — 1136 p. ISBN 978-0-13-359162-0

3. Williams A. C++ Concurrency in Action: Practical Multithreading / A.°Williams. -

8 ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)



«CuctemMHi TexHonorii» 5 (148) 2023 «System technologies»
Island : Manning Shelter, 2019. — 592 p. ISBN 9781617294693
4. Kim S. Finding Semantic Bugs in File Systems with an Extensible Fuzzing Frame-
work / S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, T. Kim // Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP). — 2019. — p. 147-161.
https://doi.org/10.1145/3341301.3359662
5. Xu W. Fuzzing File Systems Via Two-dimensional Input Space Exploration /
W. Xu, H. Moon, S. Kashyap, P-N. Tseng, T. Kim // 2019 IEEE Symposium on Security
and Privacy (SP). — 2019. — p. 818-834. https://doi.org/10.1109/SP.2019.00035
6. Xu M. Krace: Data Race Fuzzing for Kernel File Systems / M. Xu, S. Kashyap,
H. Zhao; T. Kim. // 2020 IEEE Symposium on Security and Privacy (SP). — 2020. -
p. 1643-1660. https://doi.org/10.1109/SP40000.2020.00078
7. Zhulkovskyi O. O. Evaluation of the Efficiency of the Implementation of Parallel
Computational Algorithms Using the <thread> Library in C++ / 0.°0.°Zhulkovskyi,
I. I. Zhulkovska, V. V. Shevchenko, H. Ya. Vokhmianin // Computer Systems and In-
formation Technologies. — 2022. — N2 3. — p. 49-55. https://doi.org/10.31891/csit-
2022-3-6
8. GuY. Dynamic Data Race Detection for OpenMP Programs / Y. Gu, J. Mellor-

Crummey // SC18: International Conference for High Performance Computing, Net-
working, Storage and Analysis. — 2018. — p. 767-778.
https://doi.org/10.1109/SC.2018.00064

9. Verma G. Enhancing DataRaceBench for Evaluating Data Race Detection Tools /
G. Verma, Y. Shi, C. Liao, B. Chapman, Y. Yan // 2020 IEEE/ACM 4th International
Workshop on Software Correctness for HPC Applications (Correctness). — 2020. —
p. 20-30.

https://doi.org/10.1109/Correctness51934.2020.00008

10. TehraniJamsaz A. DeepRace: A Learning-based Data Race Detector /
A. TehraniJamsaz, M. Khaleel, R. Akbari, A.Jannesari // 2021 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW). —
2021. - p. 226-233. https://doi.org/ 10.1109/ICSTW52544.2021.00046

Received 01.10.2023.
Accepted 10.10.2023.

JocnionceHHs npobaem cuHXpoHizayii ma 3axucny 0aHux
npu peanizauii 6azamonomoyHux npozpam
HazanwvHi npobaemu cyuacHozo po3sumky npouyecie ma mexHosoziii nompebyroms
nocmitiHo20 nidsuwjeHHs: NPoJdyKMuU8HOCMI KOMN’oMepHOi mexHiku, e(exmueHozo 8u-
KopucmauHs ii pecypcie, 00poOKu genukux 00cs12ie daHux ma nidmpumKu 3pocmarnuux
8UMO2 CYUacHUXx iHpopmauyiiinux cucmem. OOHUM i3 HANpAMKie, wlo 3abe3neuyroms 6u-

ISSN 1562-9945 (Print) 9
ISSN 2707-7977 (Online)



«CucreMHi Tex”onorii» 5 (148) 2023 «System technologies»

pilleHHs1 8KA3aHUX npobnemM, € BUKOPUCMAHHS 6A2amonpoyecopHux ma o0uuUCI08ans-
Hux cucmem i3 6azamosidepHuUMU npoyecopamu, wo 3ade3neuyroms weuoke ma npooyk-
MueHiule napasieibHe 8UPIWEHHS OKPeMUX PeCypCHOMICMKUX 3a80aHb.

V 38°93Ky 3 Yyum akmyanpbHumu 3adadamu € 00CnioHceHHss memodie CUHXPOHI3ayii
ma ynpasniHHsl pecypcamu 8 6azamonomouHux cepedosuwiax, po3pobaeHHs HOBUX Me-
modie ma iHcmpymeHmisa 0 hapaneibH020 NPo2pamyeaHHs 3i CMBOPeHHIM edpekmue-
Hux 6azamonomouHux Kpoc-niam@opmHux npozpam, onmumisayis arzopummis ma ap-
ximekmyp 02151 Macumab0o8aHux 00UUCTIEHb.

Memoto daHoi pobomu € supiuieHHS matixce 8axicnusiuioi ceped npobiem 6azamo-
NOMOYH020 NPOZPAMYBAHHS — NPOOAEMU 20HKU NOMOKi8 npu 6azamonomouHux oouuc-
JIEHHSIX pecypCHOMICmKUX 3aday i3 napaienpHum 0ocmynom 00 CniibHux 0aHux 3a 0ono-
MO02010 8UKOPUCMAHHS M 10MeEKCis.

B po6omi supiweHi HacmynHi 3a80aHHs: po3pobJieHo 6azamonomouHull anzopumm
peanizauii munosoi 3adaui 06po6KuU HA0BENUKUX MACUBI8 OAHUX i3 3AXUCMOM KPUMUYHOT
obnacmi 3a 00NOMO02010 NPUMIMUBI8 CUHXPOHI3auil — M’OMeKcie; 00Ci0HeHO0 NPOoOyK-
MUBHICMb BUKOHAHHS PO3P00SEH020 anzopummy npu 3HauHiti (105-10° enemenmis) Ki-
Jibkocmi 00pobaoearux davux i 3miHHOMY (1-14) uucni 064UCTIOB8ANIBHUX NOMOKIB
(a0ep); supobneHo KoHuenyiw 0 n00answ020 3acmocy8aHHs e(pekmusHux nioxodie 0o
3axucmy 0aHux y KOHKYPEHMHUX Npo2pamax, wo peanizyomscs Ha 6azamonpoyecopHux
ma 6azamosidepHux cucmemax.

BcmaHoeneHo, wo supilieHHs hpobieMu 20HKU NOMOKi8 y po32asaHymiii 3adaui Ha
cyuacHomy PC i3 npoyecopom Intel Core i7-12700H (14 cores, 2.3 GHz / 4.7 GHz) npu
30inbUWeHHI po3Mipy Macusy y 00CNi0ny8aHomy 0ianasoHi ynosiibHWE BUKOHAHHS NPO-
epamu npubausHo 6 10 pasie. 30inbWeHHs NpU YboMY YUCIIA BUKOPUCMAHUX NOMOKi8 8i0
2 0o 14 ynosinbHioe peanizayiro 3acmocyHKy npubiu3Ho 8 4 pasu, He3anexHo 8i0 KilbKo-

CTi 06POOJIIOBAaHNUX JaHUX.

JKynbkoBcbkuit Oner OyieKcaHAPOBUY — TOIeHT Kadeapu MporpamMHoOro 3abesie-
YeHHS cucTeM, JJHIMPOBCbKUIA ep>KaBHUI TEXHIYHUIA YHIBEpCUTET.

JXynbkoBcbka IHHaA IBaHiBHA — 1o1ieHT Kadenpy Kibepbesmneku Ta iHpopmalliitHux
TEeXHOJIOTii, YHIBepCUTET MUTHOI cripaByu Ta ¢piHAHCIB.

KoctreHko Bikropisi BikropiBHa - crapmmii Bukaagau Kadeapyu KOMIT IOTepPHUX
HayK Ta iHKeHepii ImporpaMHoOro 3abesneueHHs, YHiBepCUTET MUTHOI cripaBu Ta ¢i-
HAHCiB.

ByarakoBa Osbra ®emopiBHa — CT. BUK/Iagad Kadeapy KOMI'IOTepHUX HAYK Ta iH-

’KeHepii ImporpaMHOro 3abe3rnedeHHs, YHiBepCUTET MUTHOI CITpaBy Ta (hiHAHCIB.

10 ISSN 1562-9945 (Print)

ISSN 2707-7977 (Online)



«CucreMHi TexHonorii» 5 (148) 2023 «System technologies»

Zhulkovskyi Oleg - Associate Professor of Department of Software Systems,
Dniprovsky State Technical University.

Zhulkovska Inna - Associate Professor of Department of Cybersecurity and Infor-
mation Technologies, University of Customs and Finance.

Kostenko Victoria - Senior Lecturer of Department of Computer Science and Soft-
ware Engineering, University of Customs and Finance.

Bulhakova Olha - Senior Lecturer of Department of Computer Science and Soft-
ware Engineering, University of Customs and Finance.

ISSN 1562-9945 (Print) 11
ISSN 2707-7977 (Online)



