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Abstract. In the context of the ongoing war in Ukraine, ensuring the safety and longevity
of buildings and infrastructure is paramount. Traditional inspection methods for
detecting structural damages—such as cracks, spalling, or corrosion—are labor-
intensive, time-consuming, and prone to human error. This study addresses these
challenges by leveraging deep learning techniques, particularly for flat roofs. Models
including CNNs, U-Net, YOLO, and autoencoders enable efficient defect detection from
both visual and thermal data, even in hazardous or hard-to-reach areas. UAVs facilitate
rapid image collection, thereby reducing costs and risks associated with manual
inspections. Our findings indicate that Al-driven methods can significantly improve
inspection accuracy, accelerate maintenance, and ensure early detection of critical
damage, crucial for infrastructure safety in conflict-affected zones. Ultimately,
integrating deep learning into structural health monitoring offers a robust and
automated approach to safeguarding buildings and optimizing maintenance efforts.
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Introduction. The integrity of a structure is fundamental for its longevity and
safety, particularly in critical components like roofs, which are exposed to harsh
weather conditions. Detecting defects such as cracks, deformations, or corrosion in
flat roofs is vital, as failure to identify these issues early can result in serious
consequences. Traditional manual inspection methods, while effective, are time-
consuming, costly, and susceptible to human error. Recent advancements in
technology, particularly the application of machine learning (ML) and deep learning
(DL) techniques, have opened new avenues for automated and efficient damage
detection. These techniques, especially convolutional neural networks (CNNs),
object detection methods (YOLO), and autoencoders, can analyze large datasets,
such as images or sensor data, much faster and more accurately than traditional

methods. The objective of this study is to assess the effectiveness of these methods
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in detecting flat roof defects, focusing on image analysis and sensor data
interpretation for early damage detection.

Research Objective. This research aims to explore how deep learning
techniques can be applied to detect structural deformation and damage in

construction, with a focus on flat roofs. Specifically, we aim to:

1. Review deep learning models (CNN-based classifiers, U-Net, YOLO,
autoencoders) for structural damage detection.

2. Analyze the effectiveness of these methods based on recent studies, focusing
on roofs and other structural components.

3. Investigate the data sources and tools involved, such as UAVs, high-
resolution cameras, and thermal sensors.

4. Compare the performance of deep learning models across different structural
elements and damage types.

5. Examine the real-world applications and challenges of integrating deep
learning into maintenance workflows for continuous monitoring and efficient
decision-making.

Deep Learning Methods for Structural Damage Detection. Convolutional
Neural Networks (CNNs): CNNs are widely used for detecting surface defects like
cracks in concrete. They can not only classify images but also localize damage areas.
For example, ResNet-18 was employed to analyze structural damage in camera
footage, improving detection accuracy over traditional methods. Semantic
Segmentation (U-Net): U-Net is effective for pixel-level crack detection. It can
delineate even thin and irregular cracks in concrete. Advanced versions, like VM-
UNet++, further improve accuracy by incorporating multi-scale context, making
them ideal for complex crack patterns. Object Detection (YOLO, Faster R-CNN):
YOLO models excel in real-time detection, identifying defects such as exposed
rebars and spalling with high precision. These models are fast and suitable for
dynamic, on-the-fly inspections, particularly when using UAVs. Autoencoders and
Anomaly Detection: Autoencoders, a type of unsupervised model, detect anomalies
in vibration and thermal data. Trained on healthy structure data, these models can

flag deviations that indicate potential damage, even without labeled examples.
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Data Sources and Inspection Tools. Effective deep learning-based damage
detection relies on high-quality data, often collected via UAVs equipped with RGB
cameras, thermal imaging, and other sensors. These technologies enable
comprehensive inspections, especially in hard-to-reach areas like roofs. The fusion
of data from different sensors—such as visual images and thermal scans—enhances
detection capabilities. For example, UAVs can quickly cover large surfaces, and
thermal imaging can reveal hidden subsurface defects, providing a fuller picture of
structural health.

Conclusion. Deep learning has proven to be a powerful tool for automating the
detection of structural damage in flat roofs, offering high accuracy and efficiency
compared to traditional inspection methods. Convolutional neural networks (CNNs),
semantic segmentation networks like U-Net, and object detection models such as
YOLO have demonstrated effectiveness in detecting various types of damage,
including cracks, spalling, and exposed rebars. Additionally, autoencoders offer a
promising solution for detecting structural anomalies through vibration or sensor
data analysis.

The integration of UAVs, high-resolution cameras, and thermal sensors has
made data collection more efficient and accessible. Real-time monitoring systems
can now autonomously detect damage, reducing the need for manual inspections
and enhancing safety by enabling timely maintenance. While challenges remain in
ensuring models generalize across different structures and conditions, the advances
in deep learning and data collection tools suggest a future where automated damage

detection becomes a standard practice in structural health monitoring.
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BUSIBJIEHHS JE®EKTIB IVIOCKHUX ITOKPIBEJIb 3A TOITOMOI'OI0 METO/I1IB
MANIMHHOT'O HABYAHHS TA I'NIMBOKOT'O HABUYAHHSA
I'puroposuu M.C.

AHoramnig. Y konmexcmi nomouHoi 8iliHu 8 YKpaiHi 3abe3neueHHs 6e3neku ma
dogzosiuHocmi 0ydigenv i iHppacmpykmypu € Had3suuatiHo eamciusum. TpaduuyitiHi
memoou iHCneKmy8aHHs 011 BUSBJNEHHS CMPYKMYPHUX NOWKOOHCEHb—MAKUX 5K
mpiwuHu, 8idwapysaHHs abo Kopo3is—eumazarnmos 3HAYHUX JHOICbKUX pecypcis,
O6azamo uacy ma CcxuabHi 00 NOMUNOK. Y UbOMY O0O0CHIOHEHHI pPO032190aemscs
MOMCIUBICMb 3ACMOCY8AHHS MEXHOJI02ill 2IUOUHHO20 HABUAHHS, 0CO0IUB0 O/ NIAACKUX
nokpisens. Moodeni, 3okpema CNN, U-Net, YOLO ma asmoeHKkoOdepu, 0aiwoms 3Mo02y
epexmugsHo sussnaamMu depekmu HA OCHOB8I 8i3yanbHUX I Meniosux O0aHux, Hasime y
CKNAOHUX YU BaMKOOOCMYNHUX ymo8ax. BukopucmauHsi 0e3nilomHux JaimansHux
anapamie (BILV/IA) nonezwye weuodkuii 30ip 300paxceHv i 3HUNCYE sumMpamu ma pusuku,
nog’s13ani 3 pyuyHumu nepegipkamu. Pezynemamu ceiduame, wo memoou, KepoeaHi
WMYYHUM  [HMENEKMOM, MOXCYMb CYyMmeso nidguwjumu mouHiCmb nepesipok,
npuckopumu mexHiuHe 00C/1y208y8aHHSL ma 3abe3neuumu PaHHE 8USIBNIEHHSI KPUMUUHUX
NOWKOOXCeHb, WO HAOD38UUALIHO 8aXIUBO O 0Oe3neku iH(ppacmpykmypu 8 ymosax
KOHpnikmy. [Hmezpayia 21UOUHHO20 HABUAHHS 8 CUCMEMU MOHIMOPUHZY MEeXHIUHO020
cmaty cnopyo nponoHye Haditiuili i asmomamu3osaHuti nioxio o 3axucmy 6ydigensb i
onmumisauyii 3ycunw i3 ix 00C/1y208Y8aHHS.

KiiouoBi cjioBa: 21ubuHHe HagUaHHs, MOHIMOpUH2 cmawy 6ydigesb, HelipOHHI Mepexci,
YOLO, CNN, nnocki daxu.
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