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Abstract. The problem of time series embedding is a universal one. It is the main
prerequisite when it comes to modeling of dynamical processes using systems of
autonomous ordinary differential equations (ODEs) because they have hard requirements
for the dimensionality of the problem. One-dimensional ODE can only exhibit 3 types of
behavior while two-dimensional ODE can exhibit 9. This is why it is important to
increase the dimensionality of the problem before starting the modeling to allow for wider
range of possible behaviors in the final model. One way to increase the dimensionality is
to delay-embed the time series data but this approach can be extended to allow the use of
an autoencoder neural network that would associate a higher-dimensional vector to each
point in the time series and will allow the modeling to be performed in higher dimension.
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Introduction. Time series analysis is the process of extracting information
from the series of data points in an attempt to obtain useful information about the
system that produced it or to predict the next values in the series. The simplest form
of the time series is a univariate series or just a sequence of one-dimensional
measurements. If the system that the data was obtained from is sufficiently complex,
the time series may exhibit periodic, quasi-periodic, chaotic behavior, drift, etc. It is
easy for a human to see whether these behaviors are present or not simply by
looking at the plotted sequence of data points, but this can hardly qualify as proper
analysis. Luckily, there are methods developed in different fields that can be used for
identification and quantification of different properties of the time series data. Most
of these methods, however, have a hard requirements for the dimensionality of the
problem and can yield nonsensical results if the dimension of the problem they are
applied to is too low or too high. This issue can be solved by embedding the available
time series data into a higher-dimensional space where the analysis methods can be

applied.
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Time series embedding is a mapping between the segments of the time series
data and some vector space R". This mapping is expected to be an injective function
that produces a smooth trajectory of embedding vectors for adjacent time series data
segments. Usually the mapping is an unknown function that has to be approximated.
Currently, the most popular method for approximating unknown functions is fitting
a neural network to the data so that it will learn the hidden dependencies and will be
able to produce accurate results for new inputs it was not trained on.

Research results. Consider the following formulation of the Takens’s theorem [0]:

o(X)=(a(X)a(t(X)].....alf**x))
alf'(X))=X.-, (1)

b

It states that there exists a function @ that, when applied to the true vectors
on the attractor of the modeled system, yields the time series data, separated from
each other in time. From (1) it follows that if a segment of the time series is

multiplied by a matrix of shape:
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where columns of A are unitary vectors and " j$i:a;=1. The number of

columns d is the embedding dimension and the number of rows is given by the
largest selected delay value. But if we also assume the following in (1):
a(f'(X))= B(X, Xe— g %) 3)
where BR'® R is the feature extraction function that maps time series
segments to the codomain of the unknown observation function & . The matrix (2)
can be replaced with any function that maps the segment of the time series to the
embedding space. For example, the Broomhead-King approach derives the matrix by
using SVD decomposition of the time series [0] and the short-term Fourier transform
utilizes a complex-valued matrix [0] for embeddings. In our case, we use an
autoencoder network that models both @ and B functions simultaneously as its

encoder and decoder components:
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E(X)=A.Xx+b,
D(y)= Agy+by
where A, is a N by m matrix that maps N points of the trajectory into the m

(4)

dimensional latent space, . A, . is a m by 1 matrix that maps the points in the latent

space to the last point of the converted segment of the time series.
Time series Embeddings
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Figure 1: The embedding of the test time series obtained from calculting the norms of the vectors in
the Lorenz system trajectory and balancing them to have a mean of zero.

The resulting embeddings are provided on the Fig. 1.

Conclusion. We have shown that valid time series embedding can be achieved
by using an autoencoder neural network. The test embedding satisfies the Takens’s
theorem and accurately preserves the qualitative characteristics of the original
system.
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HEMPOHHA MEPEJXA TUITY ABTOKOIYBAJIBHUK [J1S1 BKIIAJTEHHSI
OTHOBMUMIPHUX YACOBUX PAIIB
Komrens €.B

e Kageopa xomn tomeprux mexrnonocii, @axynomem npuxiaornoi mamemamuxu, JJTHY
im. O. I'onuapa, Ykpaina

AHoranist. 3adaua eknadeHHs uacosux psidie € 0080Ji YHiBepCalbHOW. BoHa 56/15€
cobor0 nepuwiuli Kpok y npoyeci mModeno8aHHs OUHAMIUHUX NPOyecie 3a 00NoMo20H
A8MOHOMHUX CUCmeM OupepeHyianbHux piBHsIHb, OCKIIbKU MAKi cucmemu Hakaaoarmeo
cysopi  0OMexceHHss Ha po3MipHicmb Mmodenvosanux npouecie. OJHOBUMIPHI
JugepeHyianvHi piBHAHHI MAlOMb 8Cb020 3 MOMIUGI Munu nosediHKu, y moli uac siK
0808uMmipHi marome 9. Came momy 8axiueo 36invulysamu po3mipHocmi 3adaui neped
nouamkom Mooeno8anHs, wob dozeonumu (piHanevHili modeni mamu wupuwiuti diana3oH
nosediHok. OOHUM 3i cn0c006i8 30iNbUIEHHS] PO3MIPHOCMI € BKAAOAHHS 3 3AMPUMKOI0, dJle
lio20 modxce Gymu po3wupeHo ma y3azaivHeHo, aKWo 8UuKopucmamu HetipoHHy Mepexcy-
a8moKo0y8anvbHUK, IKa 6 noOYdysaa 3aeHcHICMb MiX¢ CezMeHmamu uacoeozo psidy ma
8UCOKOPO3MIPHUMU 8EKMOPAMU 8 NPOCMOPi BKIAOEHHSI.

KirouoBi ciioBa: aHani3 uacosux psoie, 8KaadeHHs Uacosux paois, 3miHa po3mipHoCmi,
asmokodyeanvHUK, HelpoHHa Mmepexca, MOoOJeN08aHHsl uacosux psadie, meopema
Taxkenca.
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